[
Int J Mol Sci,
2019]
Aging is a natural phenomenon that occurs in all living organisms. In humans, aging is associated with lowered overall functioning and increased mortality out of the risk for various age-related diseases. Hence, researchers are pushed to find effective natural interventions that can promote healthy aging and extend lifespan. Royal jelly (RJ) is a natural product that is fed to bee queens throughout their entire life. Thanks to RJ, bee queens enjoy an excellent reproductive function and lengthened lifespan compared with bee workers, despite the fact that they have the same genome. This review aimed to investigate the effect of RJ and/or its components on lifespan/healthspan in various species by evaluating the most relevant studies. Moreover, we briefly discussed the positive effects of RJ on health maintenance and age-related disorders in humans. Whenever possible, we explored the metabolic, molecular, and cellular mechanisms through which RJ can modulate age-related mechanisms to extend lifespan. RJ and its ingredients-proteins and their derivatives e.g., royalactin; lipids e.g., 10-hydroxydecenoic acid; and vitamins e.g., pantothenic acid-improved healthspan and extended lifespan in worker honeybees <i>Apis mellifera</i>, <i>Drosophila Melanogaster</i> flies, <i>Gryllus bimaculatus</i> crickets, silkworms, <i>Caenorhabditis elegans</i> nematodes, and mice. The longevity effect was attained via various mechanisms: downregulation of insulin-like growth factors and targeting of rapamycin, upregulation of the epidermal growth factor signaling, dietary restriction, and enhancement of antioxidative capacity. RJ and its protein and lipid ingredients have the potential to extend lifespan in various creatures and prevent senescence of human tissues in cell cultures. These findings pave the way to inventing specific RJ anti-aging drugs. However, much work is needed to understand the effect of RJ interactions with microbiome, diet, activity level, gender, and other genetic variation factors that affect healthspan and longevity.
[
Curr Top Dev Biol,
2011]
Notch-dependent CSL transcription complexes control essential biological processes such as cell proliferation, differentiation, and cell-fate decisions in diverse developmental systems. The orthologous proteins CBF1/Rbpj (mammalian), Su(H) (Drosophila), and Lag-1 (Caenorhabditis elegans) compose the CSL family of sequence-specific DNA-binding transcription factors. The CSL proteins are best known for their role in canonical Notch signaling. However, CSL factors also form transcription complexes that can function independent of Notch signaling and include repression and activation of target gene transcription. Because the different complexes share CSL as a DNA-binding subunit, they can control overlapping sets of genes; but they can also control distinct sets when partnered with tissue-specific cofactors that restrict DNA-sequence recognition or stability of the DNA-bound complex. The Notch-independent functions of CSL and the processes they regulate will be reviewed here with a particular emphasis on the tissue-specific CSL-activator complex with the bHLH factor Ptf1a.