[
J Cell Sci,
1997]
Heat shock proteins, first observed because they are preferentially synthesized by organisms exposed to heat or other physiological stress, are also synthesized constitutively. These proteins are divided into several families, namely, HSP100, 90, 70, 60 (chaperonin), and the small heat shock/alpha-crystallin proteins. They enjoy a wide phylogenetic distribution and are important because they function as molecular chaperones, able to mediate many cellular processes through an influence on higher order protein structure. For example, molecular chaperones assist in the transport of proteins into mitochondria and chloroplasts, as well as influencing clathrin lattice dynamics, viral replication and transcriptional activation. Under conditions of stress, some molecular chaperones prevent denaturation of proteins while others may dissociate protein aggregates, refolding monomers derived therefrom or directing their proteolytic destruction. We present in this review an analysis of the emerging literature on the relationship between molecular chaperones and the cytoskeleton, a collection of polymeric structures consisting of microtubules, microfilaments and intermediate filaments. A recent development in this field is identification of the TCP-1 complex as the eukaryotic cytoplasmic chaperonin which directs folding of cytoskeletal proteins such as alpha/beta/gamma-tubulin, actin and centractin. Moreover, the TCP-1 complex is a centrosomal component, apparently involved in the nucleation of microtubules. Other molecular chaperones recognize one or more cytoskeletal elements and in most cases they modulate the assembly of and/or provide protection for their constituent proteins. For example, HSP70 protects the centrosome and perhaps intermediate filaments during heat shock, and like HSP90, it binds to microtubules. Small heat shock proteins interact with microfilaments and intermediate filaments, affect their polymerization and guard them from heat shock by a phosphorylation-dependent mechanism. We conclude that molecular chaperones have different but cooperative roles in the formation and function of the eukaryotic cell cytoskeleton.
[
Cytokine Growth Factor Rev,
2001]
Based on their morphology and function, epithelial cells and neurons appear to have very little in common; however, growing evidence suggests that these two disparate cell types share an underlying polarization pathway responsible for sorting proteins to specific subcellular sites. An evolutionarily conserved complex of PDZ domain-containing proteins thought to be responsible for polarized protein localization has been identified from both brain and epithelial tissue, both from mammals and from the nematode C. elegans. Some of th most recent data on PDZ proteins and the proteins with which they interact are summarized. In particular, some of the more recently proposed models for their function in cells, and the in vivo and in vitro data that support these models are focused upon.
[
IUBMB Life,
2000]
In the past decade, important advances have been made in our knowledge of the composition of human RNase MRP and RNase P complexes. Both ribonucleoprotein particles function as endonucleases and contain RNA components that are structurally related. RNase MRP has been suggested to be involved in the processing of precursor rRNA; RNase P, in the maturation of tRNA. Here we give an overview of current data on the structure and function of human RNase MRP and RNase P particles, with emphasis on their molecular composition. At present, seven protein subunits, probably all associated with both ribonucleoprotein particles, have been isolated and their corresponding cDNAs cloned. Although no known structural motifs can be identified in the amino acid sequences of these proteins, the majority is clearly rich in basic residues. For two protein subunits, a cluster of basic amino acids have been shown to be involved in nucleolar accumulation, whereas another protein, which lacks such a region, probably enters the nucleolus by way of a piggyback mechanism. The binding regions for several of the protein subunits on the RNA have been identified, and the data have been used to create a putative structural model for the RNase MRP particle. The rather obscure situation concerning the association of the autoantigenic Th-40 protein and its possible relationship with one of the subunits, Rpp38, is discussed.