-
[
Eur J Pharmacol,
2017]
Over the past decades, C. elegans has been widely used as a model system because of its small size, transparent body, short generation time and lifespan (~3 days and 3 weeks, respectively), completely sequenced genome and tractability to genetic manipulation. Protein misfolding and aggregation are key pathological features in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Animal models, including Caenorhabditis elegans (C. elegans), have been extensively used to discover and validate new drugs against neurodegenerative diseases. The well-defined and genetically tractable nervous system of C. elegans offers an effective model to explore basic mechanistic pathways of neurodegenerative diseases. Recent progress in high-throughput drug screening also provides a powerful approach for identifying chemical modulators of biological processes. Here, we summarize the latest progress of using C. elegans as a model system for target identification and drug screening in neurodegenerative diseases.
-
[
Seminars in Developmental Biology,
1992]
At the 4-cell stage of the C. elegans embryo, three axes can be defined: anterior-posterior (A-P), dorsal-ventral (D-V), and left-right (L-R). The A-P axis first becomes obvious in the newly fertilized 1-cell embryo. Pronouned cytoplasmic assymmetries arise along the A-P axis during the first cell cycle, after which the zygote undergoes a series of stem cell-like cleavages with an A-P orientation of the mitotic spindle; these cleavages generate several somatic founder cells and a primordial germ cell. The D-V and L-R axes are defined by the direction of spindle rotation as the 2-cell embryo divides into four cells. In contrast to the A-P axis, there do not appear to be cellular asymmetries associated with the D-V and L-R axes, and both axes can easily be reversed by micromanipulation. Thus, with respect to the roles that the embryonic axes serve in cell-fate determination in the early C. elegans embryo, it appears that internally transmitted developmental information is differentially segregated along the A-P axis, but not along the D-V or L-R axes. Instead, D-V and L-R differences in the fates of cells within lineages appear to be dictated by differential
-
[
Cell,
1996]
Anyone who has watched an early embryo develop cannot help but be awed by the choreography of the early cleavages. The orientation and timing of cleavage in an animal cell are always such that the cleavage furrow bisects the mitotic apparatus (MA) during telophase, thus ensuring the equal partitioning of daughter chromosomes. In addition, the regulation of cleavage plane orientation is necessary for correct partitioning of localized determinants to specific daughter cells, for optimal positioning of cells in developing embryos, and for morphogenesis in plants, which are not motile.
-
[
Biochim Biophys Acta,
2015]
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is characterized by the degeneration of spinal motor neurons and muscle atrophy. Although the genetic cause of SMA has been mapped to the Survival Motor Neuron1 (SMN1) gene, mechanisms underlying selective motor neuron degeneration in SMA remain largely unknown. Here we review the latest developments and our current understanding of the molecular mechanisms underlying SMA pathogenesis, focusing on the animal model systems that have been developed, as well as new diagnostic and treatment strategies that have been identified using these model systems. This article is part of a special issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
-
[
Cell Microbiol,
2018]
Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped more sophisticated innate defense mechanisms than protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defense processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in Protist biology, that are modulated by L. pneumophila; including TLR2 signaling, NF-B, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects hemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although co-evolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of co-evolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.
-
[
Insect Mol Biol,
2015]
Oxygen is essential for aerobic life, and hypoxia has very severe consequences. Organisms need to overcome low oxygen levels to maintain biological functions during normal development and in disease states. The mechanism underlying the hypoxic response has been widely investigated in model animals such as Drosophila melanogaster and Caenorhabditis elegans. Hypoxia-inducible factor (HIF), a key gene product in the response to oxygen deprivation, is primarily regulated by prolyl hydroxylase domain enzymes (PHDs). However, recent findings have uncovered novel HIF-independent functions of PHDs. This review provides an overview of how invertebrates are able to sustain hypoxic damages, and highlights some recent discoveries in the regulation of cellular signalling by PHDs. Given that some core genes and major pathways are evolutionarily conserved, these research findings could provide insight into oxygen-sensitive signalling in mammals, and have biomedical implications for human diseases.
-
[
Int J Biochem Cell Biol,
2013]
Dicarbonyl/L-xylulose reductase (DCXR) is a highly conserved and phylogenetically widespread enzyme converting L-xylulose into xylitol. It also reduces highly reactive -dicarbonyl compounds, thus performing a dual role in carbohydrate metabolism and detoxification. Enzymatic properties of DCXR from yeast, fungi and mammalian tissue extracts are extensively studied. Deficiency of the DCXR gene causes a human clinical condition called pentosuria and low DCXR activity is implicated in age-related diseases including cancers, diabetes, and human male infertility. While mice provide a model to study clinical condition of these diseases, it is necessary to adopt a physiologically tractable model in which genetic manipulations can be readily achieved to allow the fast genetic analysis of an enzyme with multiple biological roles. Caenorhabditis elegans has been successfully utilized as a model to study DCXR. Here, we discuss the biochemical properties and significance of DCXR activity in various human diseases, and the utility of C. elegans as a research platform to investigate the molecular and cellular mechanism of the DCXR biology.
-
[
Science,
1998]
The Caenorhabditis elegans genome sequence was surveyed for transcription factor and signaling gene families that have been shown to regulate development in a variety of species. About 10 to 25 percent of the genes in most of the gene families already have been genetically analyzed in C. elegans, about half of the genes detect probable orthologs in other species, and about 10 to 25 percent of the genes are, at present, unique to C. elegans. Caenorhabditis elegans is also missing genes that are found in vertebrates and other invertebrates. Thus the genome sequence reveals universals in developmental control that are the legacy of metazoan complexity before the Cambrian explosion, as well as genes that have been more recently invented or lost in particular phylogenetic lineages.AD - Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA. ruvkun@frodo.mgh.harvard.eduFAU - Ruvkun, GAU - Ruvkun GFAU - Hobert, OAU - Hobert OLA - engPT - Journal ArticlePT - ReviewPT - Review, TutorialCY - UNITED STATESTA - ScienceJID - 0404511RN - 0 (Helminth Proteins)RN - 0 (Transcription Factors)SB - IM
-
[
Parasitol Res,
2015]
Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.
-
[
PLoS Negl Trop Dis,
2018]
We briefly review cysteine proteases (orthologs of mammalian cathepsins B, L, F, and C) that are expressed in flatworm and nematode parasites. Emphasis is placed on enzyme activities that have been functionally characterized, are associated with the parasite gut, and putatively contribute to degrading host proteins to absorbable nutrients [1-4]. Often, gut proteases are expressed as multigene families, as is the case with Fasciola [5] and Haemonchus [6], presumably expanding the range of substrates that can be degraded, not least during parasite migration through host tissues [5]. The application of the free-living planarian and Caenorhabditis elegans as investigative models for parasite cysteine proteases is discussed. Finally, because of their central nutritive contribution, targeting the component gut proteases with small-molecule chemical inhibitors and understanding their utility as vaccine candidates are active areas of research [7].