-
[
Ageing Res Rev,
2013]
We have conducted a comprehensive literature review regarding the effect of vitamin E on lifespan in model organisms including single-cell organisms, rotifers, Caenorhabditis elegans, Drosophila melanogaster and laboratory rodents. We searched Pubmed and ISI Web of knowledge for studies up to 2011 using the terms "tocopherols", "tocotrienols", "lifespan" and "longevity" in the above mentioned model organisms. Twenty-four studies were included in the final analysis. While some studies suggest an increase in lifespan due to vitamin E, other studies did not observe any vitamin E-mediated changes in lifespan in model organisms. Furthermore there are several studies reporting a decrease in lifespan in response to vitamin E supplementation. Different outcomes between studies may be partly related to species-specific differences, differences in vitamin E concentrations and the vitamin E congeners administered. The findings of our literature review suggest that there is no consistent beneficial effect of vitamin E on lifespan in model organisms which is consistent with reports in human intervention studies.
-
[
Journal of Gerontology,
1999]
In recent years, oxidative damage to macromolecules has gained popularity as the basis of the molecular mechanism of aging. Martin proposes oxidative damage to macromolecules as one of the major public mechanisms of aging. Interest in modifications of protein by reactive oxygen species in aging was apparently introduced by Stadtman. Although various types of oxidative modifications can occur in proteins, carbonyl residues believed to be generated by metal catalyzed reaction or otherwise introduced by lysine, arginine and/or proline residues in vivo are often used as a marker of direct or
-
[
Cell,
2004]
Heterotrimeric G proteins are well known for their function in signal transduction downstream of seven transmembrane receptors. More recently, however, genetic analysis in C. elegans and in Drosophila has revealed a second, essential function of these molecules in positioning the mitotic spindle and attaching microtubules to the cell cortex. Five new publications in Cell (Afshar et al., 2004; Du and Macara, 2004 [this issue of Cell]; Hess et al., 2004), Developmental Cell (Martin-McCaffrey et al., 2004), and Current Biology (Couwenbergs et al., 2004) show that this function is conserved in vertebrates and-like the classical pathway- involves cycling of G proteins between GDP and GTP bound conformations.
-
[
Hermann, Editeurs des Sciences et des Arts. Paris, France.,
2002]
L'espce Caenorhabditis elegans fut dcrite en 1900 Alger par E. Maupas, qui s'intressait son mode de reproduction hermaphrodite. Plus tard, vers le milieu du vingtime sicle, V. Nigon et ses collaboratuers Lyon tudirent les reorganizations cellulaires accompagnant la fecundation et les premiers clivages. J. Brun isola les preiers mutants morpholgiques.
-
[
Parasite,
1994]
Two genes coding for cuticlin components of Coenorhabditis elegans have been cloned and their structure is described. Recombinant proteins have been produced in E. coli and antibodies raised against them. Nucleic acid and specific antibodies are being used to isolate the homologues from the parasitic species Ascaris lumbricoides and Brugia pahangi.
-
[
Journal of Gerontology,
1988]
Genetic approaches have been used to gain insights into many complex biological phenomena, but until recently most attempts to use genetic approaches to understand aging or senescence processes in metazoans have met with little success. The first review in this series (Martin and Tucker, 1988) surveyed model organisms used in the genetic analysis of aging; here I will review the analysis of life span and of the aging process by means of genetics. Problems inherent in the genetic analysis of aging will be reviewed first. Successful applications of genetics to the phenomena of aging will next be highlighted. Finally, I will present examples of ways in which both molecular and classical genetic approaches can be fruitfully and realistically applied to the study of the aging processes. Where applicable, misinterpretations and possible future directions will be noted.
-
[
Seminars in Developmental Biology,
1994]
Gastrulation in Caenorhabditis elegans has been described by following the movements of individual nuclei in living embryos by Nomarski microscopy. Gastrulation starts in the 26-cell stage when the two gut precursors, Ea and Ep, move into the blastocoele. The migration of Ea and Ep does not depend on interactions with specific neighboring cells and appears to rely on the earlier fate specification of the E lineage. In particular, the long cell cycle length of Ea and Ep appears important for gastrulation. Later in embryogenesis, the precursors to the germline, muscle and pharynx join the E descendants in the interior. As in other organisms, the movement of gastrulation permit novel cell contacts that are important for the specification of certain cell fates.
-
[
Wiley Interdiscip Rev Dev Biol,
2013]
The transcriptional regulatory hierarchy that controls development of the Caenorhabditis elegans endoderm begins with the maternally provided SKN-1 transcription factor, which determines the fate of the EMS blastomere of the four-cell embryo. EMS divides to produce the posterior E blastomere (the clonal progenitor of the intestine) and the anterior MS blastomere, a major contributor to mesoderm. This segregation of lineage fates is controlled by an intercellular signal from the neighboring P2 blastomere and centers on the HMG protein POP-1. POP-1 would normally repress the endoderm program in both E and MS but two consequences of the P2-to-EMS signal are that POP-1 is exported from the E-cell nucleus and the remaining POP-1 is converted to an endoderm activator by complexing with SYS-1, a highly diverged -catenin. In the single E cell, a pair of genes encoding small redundant GATA-type transcription factors, END-1 and END-3, are transcribed under the combined control of SKN-1, the POP-1/SYS-1 complex, as well as the redundant pair of MED-1/2 GATA factors, themselves direct zygotic targets of SKN-1 in the EMS cell. With the expression of END-1/END-3, the endoderm is specified. END-1 and END-3 then activate transcription of a further set of GATA-type transcription factors that drive intestine differentiation and function. One of these factors, ELT-2, appears predominant; a second factor, ELT-7, is partially redundant with ELT-2. The mature intestine expresses several thousand genes, apparently all controlled, at least in part, by cis-acting GATA-type motifs.
-
[
FASEB J,
2011]
In this contribution to the series of reflective essays celebrating the 25th anniversary of The FASEB Journal, our task is to assess the growth of research on the biology of aging during this period and to suggest where we might be heading during the next 25 yr. A review of the literature suggests a healthy acceleration of progress during the past decade, perhaps largely due to progress on the genetics of longevity of model organisms. Progress on the genetics of health span in these model organisms has lagged, however. Research on the genetic basis of the remarkable interspecific variations in life span has only recently begun to be seriously addressed. The spectacular advances in genomics should greatly accelerate progress. Research on environmental effects on life span and health span needs to be accelerated. Stochastic variations in gene expression in aging have only recently been addressed. These can lead to random departures from homeostasis during aging.-Martin, G. M. The biology of aging: 1985-2010 and beyond.
-
[
Curr Opin Chem Biol,
2014]
The site specific, co-translational introduction of unnatural amino acids into proteins produced in cells has been facilitated by the development of the pyrrolysyl-tRNA synthetase/tRNACUA pair. This pair can now be used to direct the site-specific incorporation of designer amino acids in E. coli, yeast, mammalian cells, and animals (the worm, C. elegans and the fly, D. melanogaster). Developments in encoding components of rapid bioorthogonal reactions are providing new opportunities for labelling and visualising proteins. A new method called stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) leverages advances in genetic code expansion and bioorthogonal chemistry to label proteomes with diverse chemistry at diverse codons in E. coli, mammalian cells, and in spatially and temporally defined sets of cells in the fly. Proteomes in targeted sets of cells have been visualised by SORT-M and proteins in targeted cells have been identified by SORT-M.