-
Schroeder FC, Artyukhin AB, Aprison EZ, Panda O, Pulido DC, Burkhardt RN, Ruvinsky I, Gudibanda P, Zhang YK, Rodrigues PR, Ludewig AH
[
Nat Chem Biol,
2019]
Excreted small-molecule signals can bias developmental trajectories and physiology in diverse animal species. However, the chemical identity of these signals remains largely obscure. Here we report identification of an unusual N-acylated glutamine derivative, nacq#1, that accelerates reproductive development and shortens lifespan in Caenorhabditis elegans. Produced predominantly by C. elegans males, nacq#1 hastens onset of sexual maturity in hermaphrodites by promoting exit from the larval dauer diapause and by accelerating late larval development. Even at picomolar concentrations, nacq#1 shortens hermaphrodite lifespan, suggesting a trade-off between reproductive investment and longevity. Acceleration of development by nacq#1 requires chemosensation and is dependent on three homologs of vertebrate steroid hormone receptors. Unlike ascaroside pheromones, which are restricted to nematodes, fatty acylated amino acid derivatives similar to nacq#1 have been reported from humans and invertebrates, suggesting that related compounds may serve signaling functions throughout metazoa.
-
[
PLoS Genet,
2017]
Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid -oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity.
-
[
Genes Dev,
2004]
Environmental cues transduced by an endocrine network converge on Caenorhabditis elegans nuclear receptor DAF-12 to mediate arrest at dauer diapause or continuous larval development. In adults, DAF-12 selects long-lived or short-lived modes. How these organismal choices are molecularly specified is unknown. Here we show that coregulator DIN-1 and DAF-12 physically and genetically interact to instruct organismal fates. Homologous to human corepressor SHARP, DIN-1 comes in long (L) and short (S) isoforms, which are nuclear localized but have distinct functions. DIN-1L has embryonic and larval developmental roles. DIN-1S, along with DAF-12, regulates lipid metabolism, larval stage-specific programs, diapause, and longevity. Epistasis experiments reveal that
din-1S acts in the dauer pathways downstream of lipophilic hormone, insulin/IGF, and TGFbeta signaling, the same point as
daf-12. We propose that the DIN-1S/DAF-12 complex serves as a molecular switch that implements slow life history alternatives in response to diminished hormonal signals.
-
[
Genes Nutr,
2014]
Dietary restriction (DR) increases life span, health span and resistance to stress in a wide range of organisms. Work from a large number of laboratories has revealed evolutionarily conserved mechanisms that mediate the DR response. Here, we analyzed the genome-wide gene expression profiles of Caenorhabditis elegans under DR versus ad libitum conditions. Using the Ortho2ExpressMatrix tool, we searched for C. elegans orthologs of mouse genes that have been shown to be differentially expressed under DR conditions in nearly 600 experiments. Based on our bioinformatic approaches, we obtained 189 DR-responsive genes, and 45 of these are highly conserved from worm to man. Subsequent testing of sixteen genes that are up-regulated under DR identified eight genes that abolish the DR-induced resistance to heat stress in C. elegans. Further analyses revealed that
fkb-4,
dod-22 and
ikb-1 genes also abolish increased life span in response to DR. The identified genes that are necessary for the DR response are sensitive to certain stress signals such as metabolic perturbances (
dod-22,
fkb-4 and
nhr-85), DNA damage (
ikb-1), heat shock (
hsp-12.6) and cancer-like overgrowth (
prk-2 and
tsp-15). We propose that most of the DR-responsive genes identified are components of the recently discovered cellular surveillance-activated detoxification and defenses pathway, which is, among others, important for the survival of organisms in times of food deprivation.
-
Park D, Bethke A, Zimmermann A, Doering F, Fox BW, Riddle DL, Izrayelit Y, Mahanti P, Ludewig AH, Schroeder FC, Malik RU
[
Proc Natl Acad Sci U S A,
2013]
Lifespan in Caenorhabditis elegans, Drosophila, and mice is regulated by conserved signaling networks, including the insulin/insulin-like growth factor 1 (IGF-1) signaling cascade and pathways depending on sirtuins, a family of NAD(+)-dependent deacetylases. Small molecules such as resveratrol are of great interest because they increase lifespan in many species in a sirtuin-dependent manner. However, no endogenous small molecules that regulate lifespan via sirtuins have been identified, and the mechanisms underlying sirtuin-dependent longevity are not well understood. Here, we show that in C. elegans, two endogenously produced small molecules, the dauer-inducing ascarosides ascr#2 and ascr#3, regulate lifespan and stress resistance through chemosensory pathways and the sirtuin SIR-2.1. Ascarosides extend adult lifespan and stress resistance without reducing fecundity or feeding rate, and these effects are reduced or abolished when nutrients are restricted. We found that ascaroside-mediated longevity is fully abolished by loss of SIR-2.1 and that the effect of ascr#2 requires expression of the G protein-coupled receptor DAF-37 in specific chemosensory neurons. In contrast to many other lifespan-modulating factors, ascaroside-mediated lifespan increases do not require insulin signaling via the FOXO homolog DAF-16 or the insulin/IGF-1-receptor homolog DAF-2. Our study demonstrates that C. elegans produces specific small molecules to control adult lifespan in a sirtuin-dependent manner, supporting the hypothesis that endogenous regulation of metazoan lifespan functions, in part, via sirtuins. These findings strengthen the link between chemosensory inputs and conserved mechanisms of lifespan regulation in metazoans and suggest a model for communal lifespan regulation in C. elegans.
-
[
MicroPubl Biol,
2019]
Nematodes, such as the model organism Caenorhabditis elegans, communicate environmental and developmental information with conspecifics through a class of small-molecule pheromones termed ascarosides (Butcher, 2017; Chute and Srinivasan, 2014; Ludewig and Schroeder, 2013). Nematodes share ascaroside signaling pathways (Choe et al., 2012), but are also capable of eavesdropping on chemical signals of predatory species (Liu et al., 2018). Ascarosides signal vast arrays of information, either individually or as blends, based on concentration, sex, physiological state, and other ascarosides sensed (McGrath and Ruvinsky, 2019; Pungaliya et al., 2009; Srinivasan et al., 2008; Srinivasan et al., 2012). For instance, octopamine-succinylated ascaroside #9 (osas#9) is able to signal starvation conditions in the absence of other ascarosides (Artyukhin et al., 2013).C. elegans (Cel) is an androdioecious species, with the majority of the natural population comprised of self-fertilizing hermaphrodites, and a small proportion (<0.2%) being male (Hodgkin et al., 1979). There are two other similarly androdioecious species in the genus, C. briggsae (Cbr) and C. tropicalis (Ctr). All three species evolved their hermaphroditism separately and uniquely (Ellis and Lin, 2014). Of the male-attracting ascarosides secreted by C. elegans (ascr#2, ascr#3, ascr#4, and ascr#8), ascr#8 is the most potent (Pungaliya et al., 2009). Since ascr#8 is a male attractant in this hermaphroditic species, we asked if other hermaphroditic species retained the ability to attract males using this cue. Males from the gonochoristic (male-female) sister species to C. briggsae and C. tropicalis C. nigoni (Cni) and C. wallacei (Cwa), respectively were also assayed for their ability to respond to ascr#8. The closest relative of C. elegans, the gonochoristic C. inopinata (Cin, formerly C. sp. 34), which has been recently characterized (Kanzaki et al., 2018), was also tested, along with the JaponicaGroup gonochoristic species C. japonica(Cja) and C. afra(Caf).Dwell times were analyzed as previously described using a Spot Retention Assay (Narayan et al., 2016). Dwell times were transformed using a Base 2 Exponentiation (2n, wherein n is equal to the raw dwell time value) to generate only non-zero data in order to calculate fold-changes. The Logbase2 of the fold-changes was then calculated to normalize the data. All data sets were first checked for normality using a DAgostino
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.
-
[
J Antibiot (Tokyo),
1990]
Cochlioquinone A, isolated from the fungus Helminthosporium sativum, was found to have nematocidal activity. Cochlioquinone A is a competitive inhibitor of specific [3H]ivermectin binding suggesting that cochlioquinone A and ivermectin interact with the same membrane receptor.