-
[
Zootaxa,
2022]
Rhagovelia medinae sp. nov., of the hambletoni group (angustipes complex), and R. utria sp. nov., of the hirtipes group (robusta complex), are described, illustrated, and compared with similar congeners. Based on the examination of type specimens, six new synonymies are proposed: R. elegans Uhler, 1894 = R. pediformis Padilla-Gil, 2010, syn. nov.; R. cauca Polhemus, 1997 = R. azulita Padilla-Gil, 2009, syn. nov., R. huila Padilla-Gil, 2009, syn. nov., R. oporapa Padilla-Gil, 2009, syn. nov, R. quilichaensis Padilla-Gil, 2011, syn. nov.; and R. gaigei, Drake Hussey, 1947 = R. victoria Padilla-Gil, 2012 syn. nov. The first record from Colombia is presented for R. trailii (White, 1879), and the distributions of the following species are extended in the country: R. cali Polhemus, 1997, R. castanea Gould, 1931, R. cauca Polhemus, 1997, R. gaigei Drake Hussey, 1957, R. elegans Uhler, 1894, R. femoralis Champion, 1898, R. malkini Polhemus, 1997, R. perija Polhemus, 1997, R. sinuata Gould, 1931, R. venezuelana Polhemus, 1997, R. williamsi Gould, 1931, and R. zeteki Drake, 1953.
-
[
J Infect Dis,
2001]
The immune response after early exposure to or infection with Onchocerca volvulus was investigated in an autochthonous focus caused by the migration of infected persons to a previously unaffected area in Ecuador. Peripheral blood mononuclear cell (PBMC) proliferative and cytokine responses (interferon [IFN]-gamma and interleukin [IL]-5) to filarial antigens were measured in 14 subjects with serologic evidence of exposure and in 7 subjects with evidence of dermal microfilarial DNA and were compared with responses in 43 subjects with chronic O. volvulus infections. PBMC proliferative and cytokine responses (IFN-gamma and IL-5) to parasite antigens were elevated in the early exposure/infection group, compared with those in the chronic infection group. Addition of an IL-10-neutralizing antibody to filaria antigen-stimulated cultures resulted in significantly elevated proliferative responses in the chronic infection group. The findings suggest that early exposure and early parasite patency are associated with a vigorous cellular response, but, as infections become chronic, the cellular response becomes down-regulated, partly through an IL-10-dependent mechanism.
-
[
J Biol Chem,
1990]
The nematode Caenorhabditis elegans (C. elegans) expresses the regulatory subunit (R) of cAMP-dependent protein kinase at a level similar to the levels determined for R subunits in mammalian tissues. Approximately 60% of the C. elegans cAMP-binding protein is tightly associated with particulate structures by noncovalent interactions. Ionic detergents or 7 M urea solubilize particulate R. Solubilized and cytosolic R subunits have apparent Mr values of 52,000 and pI values of 5.5. cDNA and genomic DNA encoding a unique C. elegans R subunit were cloned and sequenced. The derived amino acid sequence contains 375 residues; carboxyl-terminal residues 145-375 are 69% identical with mammalian RI. However, residues 44-145 are markedly divergent from the corresponding regions of all other R sequences. This region might provide sufficient structural diversity to adapt a single R subunit for multiple functional roles in C. elegans. Antibodies directed against two epitopes in the deduced amino acid sequence of C. elegans R avidly bound nematode cytosolic and particulate R subunits on Western blots and precipitated dissociated R subunits and R2C2 complexes from solution. Immunofluorescence analysis revealed that the tip of the head, which contains chemosensory and mechanosensory neurons, and the pharyngeal nerve ring were enriched in R. The R subunit concentration is low during early embryogenesis in C. elegans. A sharp increase (approximately 6-fold) in R content begins several hours before the nematodes hatch and peaks during the first larval stage. Developmental regulation of R expression occurs at translational and/or post-translational levels. The 8-kilobase pair C. elegans R gene is divided into 8 exons by introns ranging from 46 to 4300 base pairs. The 5'-flanking region has no TATA box and contains preferred and minor transcription start sites.
-
[
Nat Commun,
2021]
R-bodies are long, extendable protein polymers formed in the cytoplasm of some bacteria; they are best known for their role in killing of paramecia by bacterial endosymbionts. Pseudomonas aeruginosa PA14, an opportunistic pathogen of diverse hosts, contains genes (referred to as the reb cluster) with potential to confer production of R-bodies and that have been implicated in virulence. Here, we show that products of the PA14 reb cluster associate with R-bodies and control stochastic expression of R-body structural genes.PA14 expresses reb genes during colonization of plant and nematode hosts, and R-body production is required for full virulence in nematodes. Analyses of nematode ribosome content and immune response indicate that P. aeruginosa R-bodies act via a mechanism involving ribosome cleavage and translational inhibition. Our observations provide insight into the biology of R-body production and its consequences during P. aeruginosa infection.
-
[
Dev Biol,
2024]
While the nervous system of bilaterian animals is mainly left-right (L-R) symmetric at the anatomical level, some molecular and functional L-R asymmetries exist. However, the extent of these molecular asymmetries and their functional consequences remain poorly characterized. C. elegans allows to study L-R asymmetries in the nervous system with single-neuron resolution. We have previously shown that a neural bHLH transcription factor, HLH-16/Olig, is L-R asymmetrically expressed in the AIY neuron lineage and regulates AIY axon projections in a L-R asymmetric manner. Here, by combining a candidate approach and single-cell RNA sequencing data analysis, we identify the ephrin protein EFN-2 and the Flamingo protein FMI-1 as downstream targets of HLH-16 that are L-R asymmetrically expressed in the AIY lineage. We show that EFN-2 and FMI-1 collaborate in the L-R asymmetric regulation of axonal growth. EFN-2 may act via a non-canonical receptor of the L1CAM family, SAX-7. Our study reveals novel molecular L-R asymmetries in the C. elegans nervous system and their functional consequences.
-
[
Commun Integr Biol,
2011]
The development of bilateral symmetry during the evolution of species probably 600 million years ago brought about several important innovations: It fostered efficient locomotion, streamlining and favored the development of a central nervous system through cephalization. However, to increase their functional capacities, many organisms exhibit chirality by breaking their superficial left-right (l-r) symmetry, which manifests in the lateralization of the nervous system or the l-r asymmetry of internal organs. In most bilateria, the mechanisms that maintain consistent l-r asymmetry throughout development are poorly understood. This review highlights insights into mechanisms that couple early embryonic l-r symmetry breaking to subsequent l-r patterning in the roundworm Caenorhabditis elegans. A recently identified strategy for l-r patterning in the early C. elegans embryo is discussed, the spatial separation of midline and anteroposterior axis, which relies on a rotational cellular rearrangement and non-canonical Wnt signaling. Evidence for a general relevance of rotational/torsional rearrangements during organismal l-r patterning and for non-canonical Wnt signaling/planar cell polarity as a common signaling mechanism to maintain l-r asymmetry is presented.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.
-
[
Parasit Vectors,
2015]
BACKGROUND: Control and elimination of filarial pathogens is a central focus of major global health efforts directed at parasitic diseases of developing countries. Accomplishment of these goals would be markedly enhanced by the enhanced destruction of the adult stage of filariae. The identification of new, more quantitative biomarkers that correlate with mortality or chemotherapeutic damage to adult filariae, would greatly facilitate, for example, the development of new macrofilaricides. METHODS: An immunocytochemical approach using an antibody against human Nras was used to identify and detect changes in the nematode homolog
let-60 that is associated with cell growth and maintenance. Single Onchocerca volvulus nodules were removed from each of 13 patients treated with ivermectin (as part of a community-wide mass drug administration programme), and from each of 13 untreated individuals; these 26 nodules were stained with the anti-Nras antibody. The localization and degree of positivity of Nras/let-60 staining were assessed subjectively and compared between the two groups; the positivity of staining was also quantified, using image analysis, in a subgroup of these nodules. In addition, the specific morphological association between Nras/let-60 and the Wolbachia endosymbiont present in these parasites was also observed in 4 additional filarial species using an anti-Wolbachia surface protein (WSP) antibody under light and confocal microscopy. RESULTS: Nras/let-60 is present in many structures within the adult female worms. A statistically significant decrease in the general staining intensity of Nras/let-60 was observed in adult female O. volvulus treated with ivermectin when compared with parasites from untreated patients. Nras/let-60 staining was frequently observed to be co-localized with WSP in O.volvulus, Brugia malayi, Litomosoides sigmodontis and Dirofilaria immitis. Nras/let60 is also present in Onchocerca ochengi. CONCLUSION: Nras/let-60, as detected by immunocytochemical staining, is decreased in ivermectin-treated adult female O. volvulus relative to untreated control specimens, suggesting a suppressive effect of ivermectin on the overall biochemical activity of these parasites. Co-localization of Nras/let-60 and WSP suggests the possibility that the endosymbiont utilizes this nematode protein as part of a mutualistic relationship. Nras/let60 appears to be a useful biomarker for assessing the health of filariae.
-
[
Mol Cell,
2013]
R loops are transcription byproducts that constitute athreat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation.Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonucleaseH overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics.
-
[
J Biol Chem,
2000]
Caenorhabditis elegans protein kinase A (PKAI(CE)) is tethered to organelles in vivo. A unique A kinase anchor protein (AKAP(CE)) avidly binds the RI-like regulatory subunits (R(CE)) of PKAI(CE) and stringently discriminates against RIIalpha and RIIbeta subunits, the preferred ligands for classical AKAPs. We elucidated structural features that stabilize AKAP(CE).R(CE) complexes and confer atypical R isoform specificity on the anchor protein. Three large aliphatic amino acids (Leu(236), Ile(248), and Leu(252)) in the tethering domain of AKAP(CE) (residues 236-255) are crucial for ligation of R(CE). Their side chains apparently generate a precisely configured hydrophobic binding pocket that accommodates an apolar surface on R(CE) dimers. Basic residues (His(254)-Arg(255)-Lys(256)) at the C terminus of the tethering site set an upper limit on affinity for R(CE.) A central dipeptide (Phe(243)-Ser(244)) contributes critical and distinctive properties of the tethering site. Ser(244) is essential for selective binding of R(CE) and exclusion of RII isoforms. The aromatic hydrophobic character of Phe(243) ensures maximal R(CE) binding activity, thereby supporting a "gatekeeper" function of Ser(244). Substitution of Phe(243)-Ser(244) with Leu-Val generated an RII-specific AKAP. R(CE) and RII subunits contain similar dimerization domains. AKAP-binding domains of R(CE) (residues 23-47) and RII differ markedly in size, amino acid sequence, and docking specificity. Four hydrophobic residues (Cys(23), Val(27), Ile(32), and Cys(44)) in R(CE) are crucial for avid binding with AKAP(CE), whereas side chains from Leu(20), Leu(35), Val(36), Ile(40), and Ile(41) have little impact on complex formation. Tyr(26) is embedded in the docking domain, but its aromatic ring is required for R(CE)-R(CE) dimerization. Residues 236-255 in AKAP(CE) also constitute a binding site for mammalian RIalpha. RIalpha (PKAIalpha) is tightly sequestered by AKAP(CE) in vitro (K(D) = approximately 10 nM) and in the environment of intact cells. The tethering domain of AKAP(CE) provides a molecular module for manipulating intracellular localization of RI and elucidating functions of anchored PKAI in eukaryotes.