[
Biochim Biophys Acta Mol Cell Res,
2022]
The nematode Caenorhabditis elegans is a widely used research model for the investigation of metabolism, aging and age-associated diseases. However, when investigating the impact of natural compounds or drugs on those topics, a major confounder is the metabolism of these test substances by live E. coli bacteria, the standard food source of C. elegans. Using paraformaldehyde instead of heat to inactivate E. coli, which allows for high-throughput technologies and better food availability, it is shown here that RNA-interference works equally well, thus demonstrating the absence of considerable interfering modifications of paraformaldehyde with nucleic acids.
[
Science,
1977]
At a recent conference in Woods Hole, Massachusetts, investigators met to discuss the nematode Caenorhabditis elegans. This free-living worm may, according to some workers, become the Escherichia coli or at least the bacteriophage T4 of the animal world. Small (about 1mm in length) and semitransparent, C. elegans provides for research the advantages of a short life cycle (3 days) and a simple anatomy-it contains about 810 nongonadal nuclei. It is both easy to cultivate, on E. coli as a food source, and convenient for genetic analysis. Its genes are carried on five autosomes and a sex chromosome (X), and it has a genome size about 20 times that of E. coli. It generally reproduces as a self-fertilizing hermaphrodite (XX), but occasional males (XO), which arise by nondisjunction, permit sexual reproduction as well....
[
FEMS Microbiol Lett,
2014]
Staphylococcus lugdunensis is a human skin commensal organism, but it is considered as a virulent Staphylococcus species. In a previous study, we described the first S.lugdunensis autolysin, AtlL. This enzyme displays two enzymatic domains and generates two peptidoglycan hydrolases, an N-acetylmuramoyl-l-alanine amidase and an N-acetylglucosaminidase. In this study, to further investigate the functions of this autolysin, a atlL mutant was constructed. The microscopic examination of the mutant showed cell aggregates and revealed a rough outer cell surface demonstrating, respectively, the roles of AtlL in cell separation and peptidoglycan turnover. This atlL mutant exhibited a lower susceptibility to Triton X-100-induced autolysis assays and appears to be more resistant to cell wall antibiotic-induced lysis and death compared with its parental strain. The atlL mutation affected the biofilm formation capacity of S.lugdunensis. Furthermore, the atlL mutant showed trends toward reduced virulence using the Caenorhabditis elegans model. Overall, AtlL appears as a major cell wall autolysin of S.lugdunensis implicated in cell separation, in stress-induced autolysis and in bacterial pathogenesis.