-
[
WormBook,
2005]
Nematodes are the most abundant type of animal on earth, and live in hot springs, polar ice, soil, fresh and salt water, and as parasites of plants, vertebrates, insects, and other nematodes. This extraordinary ability to adapt, which hints at an underlying genetic plasticity, has long fascinated biologists. The fully sequenced genomes of Caenorhabditis elegans and Caenorhabditis briggsae, and ongoing sequencing projects for eight other nematodes, provide an exciting opportunity to investigate the genomic changes that have enabled nematodes to invade many different habitats. Analyses of the C. elegans and C. briggsae genomes suggest that these include major changes in gene content; as well as in chromosome number, structure and size. Here I discuss how the data set of ten genomes will be ideal for tackling questions about nematode evolution, as well as questions relevant to all eukaryotes.
-
[
Genetics,
2022]
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
-
[
WormBook,
2005]
Evolutionary innovation requires genetic raw materials upon which selection can act. The duplication of genes is of fundamental importance in providing such raw materials. Gene duplications are very widespread in C. elegans and appear to arise more frequently than in either Drosophila or yeast. It has been proposed that the rate of duplication of a gene is of the same order of magnitude as the rate of mutation per nucleotide site, emphasising the enormous potential that gene duplication has for generating substrates for evolutionary change. The fate of duplicated genes is discussed. Complete functional redundancy seems unstable in the long term. Most models require that equality amongst duplicated genes must be disrupted if they are to be preserved. There are various ways of achieving inequality, involving either the nonfunctionalization of one copy, or one copy acquiring some novel, beneficial function, or both copies becoming partially compromised so that both copies are required to provide the overall function that was previously provided by the single ancestral gene. Examples of C. elegans gene duplications that appear to have followed each of these pathways are considered.
-
[
WormBook,
2005]
In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the global, epigenetic regulation of X chromosomes that is maintained throughout the lifetime of hermaphrodites.