-
[
Chemosphere,
2013]
The widespread usage of antibiotics in agriculture leads to releases into the environment, but there is insufficient knowledge of the side-effects on non-target organisms. Therefore, we investigated the effects of the sulfonamide-antibiotic sulfamethoxazole (SMX) on Caenorhabditis elegans at phenotypic, biochemical and molecular biological levels. Multiple endpoints, including life history traits, thermal stress resistance and lipid peroxidation, as well as gene expression profiles, were determined after exposure of the nematodes to SMX. In contrast to expectations, SMX prolonged the lifespan and increased both the body size and pharynx pumping rate. On the other hand, SMX delayed reproductive timing and caused lipid peroxidation. The total number of offspring and thermal stress resistance were unaffected. The up-regulation of
hsp-16.1 indicated stress in general and the increased lipid peroxidation oxidative stress in particular. This oxidative stress indicated that mitohormesis was the likely cause of the longevity and that enhanced pumping frequency was probably the reason for the increased growth. The sole adverse effect was delayed initial reproduction. This delay, however, can be crucial for r-strategists, such as the bacterivorous model animal used, in sustaining their populations in the environment in the presence of predators. Bacterivorous animals, in turn, are essential to maintaining nutrient recycling via the microbial loop.
-
Dong M, Liu S, Li N, Yang J, Ma Y, Li X, Fu S, Liu Q, Wang G, Cao Y, Jiang H, Li L, Shan Y
[
Cell Metab,
2021]
Electron transport chain (ETC) dysfunction or hypoxia causes toxic NADH accumulation. How cells regenerate NAD<sup>+</sup> under such conditions remains elusive. Here, integrating bioinformatic analysis and experimental validation, we identify glycerol-3-phosphate (Gro3P) biosynthesis as an endogenous NAD<sup>+</sup>-regeneration pathway. Under genetic or pharmacological ETC inhibition, disrupting Gro3P synthesis inhibits yeast proliferation, shortens lifespan of C.elegans, impairs growth of cancer cells in culture and in xenografts, and causes metabolic derangements in mouse liver. Moreover, the Gro3P shuttle selectively regenerates cytosolic NAD<sup>+</sup> under mitochondrial complex I inhibition; enhancing Gro3P synthesis promotes shuttle activity to restore proliferation of complex I-impaired cells. Mouse brain has much lower levels of Gro3P synthesis enzymes as compared with other organs. Strikingly, enhancing Gro3P synthesis suppresses neuroinflammation and extends lifespan in the Ndufs4<sup>-/-</sup> mice. Collectively, our results reveal Gro3P biosynthesis as an evolutionarily conserved coordinator of NADH/NAD<sup>+</sup> redox homeostasis and present a therapeutic target for mitochondrial complex I diseases.
-
[
PLoS One,
2012]
BACKGROUND: Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding 35C and also senses changes in its environmental temperature in the range between 15 and 25C. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. CONCLUSIONS/SIGNIFICANCE: Our results identify distinct thermal responses mediated by a single neuron, but also show that parallel nociceptor circuits and molecules may be used as back-up strategies to guarantee fast and efficient responses to potentially detrimental stimuli.
-
[
Neuron,
2018]
Animals' movements actively shape their perception and subsequent decision making. In this issue of Neuron, Liu etal. (2018) show how C.elegans nematodes steer toward an odorant: a dedicated interneuron class integrates oscillatory olfactory signals, generated by head swings, with corollary discharge motor signals.
-
[
J Cell Biol,
2020]
In this issue, Liu et al. (2019. J. Cell. Biol.https://doi.org/10.1083/jcb.201907067) find that the inhibition of mitochondrial ribosomes in combination with impaired mitochondrial fission or fusion increases C. elegans lifespan by activating the transcription factor HLH-30, which promotes lysosomal biogenesis.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.
-
[
MicroPubl Biol,
2021]
C. elegans males that have come into close proximity of hermaphrodites initiate copulatory behavior comprising at least five different steps termed response, turning, location of vulva, spicule insertion and sperm transfer (Loer and Kenyon 1993, Liu and Sternberg 1995, Chute and Srinivasan 2014). Mutations specifically affecting different steps have been isolated and characterized (Barr and Sternberg 1999, Hajdu-Cronin et al. 2017, Liu et al. 2017). However, our understanding of the molecular mechanisms acting in the neurons controlling copulation is far from complete. During the response step, males that have sensed the presence of a hermaphrodite move backwards in such a way that the males tail fan glides along the surface of the hermaphrodite until the tail reaches the vulva (or head or tail) (Loer and Kenyon 1993, Liu and Sternberg 1995, Sherlekar and Lints 2014). Response behavior is regulated by ciliated neurons in the tail whose dendrites lie in sensory rays within the fan (Liu and Sternberg 1995). If a male reaches the end of the hermaphrodite without having found the vulva, it executes a turn during which the tail bends tightly ventrally so that contact is established between the ventral surface of the fan and the other side of the intended mate (Loer and Kenyon 1993, Liu and Sternberg 1995). The ability to execute turns efficiently is dependent upon serotonergic neurons in the posterior ventral nerve cord (the CP neurons) and on their ability to produce serotonin (Loer and Kenyon 1993, Carnell et al. 2005). Serotonin stimulates the diagonal muscles in the tail to induce curling ventrally by stimulating a serotonin receptor, SER-1 (Loer and Kenyon 1993, Carnell et al. 2005). However, how serotonin affects diagonal muscles and ventral turning is not fully understood.
-
Lou Y, Haque A, Freyzon Y, Farese RV, Terry-Kantor E, Hofbauer HF, Termine D, Welte MA, Barrasa MI, Imberdis T, Noble T, Lindquist S, Clish CB, Jaenisch R, Pincus D, Nuber S, Sandoe J, Kohlwein SD, Kim TE, Ho GPH, Ramalingam N, Walther TC, Baru V, Selkoe D, Srinivasan S, Landgraf D, Soldner F, Dettmer U, Fanning S, Becuwe M, Newby G
[
Mol Cell,
2018]
In Parkinson's disease (PD), -synuclein (S) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in S or lipid/fattyacid homeostasis affect each other. Lipidomic profiling of human S-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of S dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased S yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in S-overexpressing rat neurons. In a C.elegans model, SCD knockout prevented S-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on S homeostasis: in human neural cells, excess OA caused S inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for S-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.
-
[
PLoS One,
2017]
In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other's behavior, but additional studies are required necessary to elucidate the exact mechanism(s) involved.
-
[
Pathog Dis,
2014]
Due to the resistance of Staphylococcus aureus to several antibiotics, treatment of S. aureus infections is often difficult. As an alternative to conventional antibiotics, the field of bacterial interference is investigated. Staphylococcus epidermidis produces a serine protease (Esp) which inhibits S. aureus biofilm formation and which degrades S. aureus biofilms. In this study, we investigated the protease production of 114 S. epidermidis isolates, obtained from biofilms on endotracheal tubes (ET). Most of the S. epidermidis isolates secreted a mixture of serine, cysteine and metalloproteases. We found a link between high protease production by S. epidermidis and the absence of S. aureus in ET biofilms obtained from the same patient. Treating S. aureus biofilms with the supernatant (SN) of the most active protease producing S. epidermidis isolates resulted in a significant biomass decrease compared to untreated controls, while the number of metabolically active cells was not affected. The effect on the biofilm biomass was mainly due to serine proteases. Staphylococcus aureus biofilms treated with the SN of protease producing S. epidermidis were thinner with almost no extracellular matrix. An increased survival of Caenorhabditis elegans, infected with S. aureus Mu50, was observed when the SN of protease positive S. epidermidis was added.