-
[
Seminars in Developmental Biology,
1992]
At the 4-cell stage of the C. elegans embryo, three axes can be defined: anterior-posterior (A-P), dorsal-ventral (D-V), and left-right (L-R). The A-P axis first becomes obvious in the newly fertilized 1-cell embryo. Pronouned cytoplasmic assymmetries arise along the A-P axis during the first cell cycle, after which the zygote undergoes a series of stem cell-like cleavages with an A-P orientation of the mitotic spindle; these cleavages generate several somatic founder cells and a primordial germ cell. The D-V and L-R axes are defined by the direction of spindle rotation as the 2-cell embryo divides into four cells. In contrast to the A-P axis, there do not appear to be cellular asymmetries associated with the D-V and L-R axes, and both axes can easily be reversed by micromanipulation. Thus, with respect to the roles that the embryonic axes serve in cell-fate determination in the early C. elegans embryo, it appears that internally transmitted developmental information is differentially segregated along the A-P axis, but not along the D-V or L-R axes. Instead, D-V and L-R differences in the fates of cells within lineages appear to be dictated by differential
-
[
Cell Microbiol,
2018]
Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped more sophisticated innate defense mechanisms than protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defense processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in Protist biology, that are modulated by L. pneumophila; including TLR2 signaling, NF-B, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects hemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although co-evolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of co-evolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.
-
[
Int J Biochem Cell Biol,
2013]
Dicarbonyl/L-xylulose reductase (DCXR) is a highly conserved and phylogenetically widespread enzyme converting L-xylulose into xylitol. It also reduces highly reactive -dicarbonyl compounds, thus performing a dual role in carbohydrate metabolism and detoxification. Enzymatic properties of DCXR from yeast, fungi and mammalian tissue extracts are extensively studied. Deficiency of the DCXR gene causes a human clinical condition called pentosuria and low DCXR activity is implicated in age-related diseases including cancers, diabetes, and human male infertility. While mice provide a model to study clinical condition of these diseases, it is necessary to adopt a physiologically tractable model in which genetic manipulations can be readily achieved to allow the fast genetic analysis of an enzyme with multiple biological roles. Caenorhabditis elegans has been successfully utilized as a model to study DCXR. Here, we discuss the biochemical properties and significance of DCXR activity in various human diseases, and the utility of C. elegans as a research platform to investigate the molecular and cellular mechanism of the DCXR biology.
-
[
J Environ Manage,
2019]
Persistent organic pollutants (POPs) and endocrine disrupting compounds (EDCs) are almost ubiquitous in synthetic and natural sources; however these contaminants adversely impact ecosystems and humans. Owing to their potential toxicity, concerns have been raised about the effects of POPs and EDCs on ecological and human health. Therefore, toxicity evaluation and mechanisms actions of these contaminants are of great interest. The nematode Caenorhabditis elegans (C. elegans), an excellent model animal for environmental toxicology research, has been used widely for toxicity studies of POPs or EDCs from the whole-animal level to the single-cell level. In this review, we have discussed the toxicity of specific POPs or EDCs after acute, chronic, and multigenerational exposure in C. elegans. We have also introduced a discussion of the toxicological mechanisms of these compounds in C. elegans, with respect to oxidative stress, cell apoptosis, and the insulin/IGF-1 signaling pathway. Finally, we raised considered the perspectives and challenges of the toxicity assessments, multigenerational toxicity, and toxicological mechanisms.
-
[
Parasitol Res,
2015]
Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.
-
Li L, Bao W, Hu H, Zhu A, Wu Y, Li G, Zheng F, Li Y, Zhang W, Wang Q, Li H
[
Antioxidants (Basel),
2022]
Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi, bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and pathways involved in oxidative stress and antioxidant response. Natural products' oxidative or antioxidative properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell and tissue cultures, rodent and nonhuman primate animal models, and human studies. Due to the renewal of the concept of experimental animals, especially the popularization of alternative 3R methods for reduction, replacement and refinement, many assessment experiments have been carried out in new alternative models. The model organism Caenorhabditis elegans has been used for medical research since Sydney Brenner revealed its genetics in 1974 and has been introduced into pharmacology and toxicology in the past two decades. The data from C. elegans have been satisfactorily correlated with traditional experimental models. In this review, we summarize the advantages of C. elegans in assessing oxidative and antioxidative properties of natural products and introduce methods to construct an oxidative damage model in C. elegans. The biomarkers and signaling pathways involved in the oxidative stress of C. elegans are summarized, as well as the oxidation and antioxidation in target organs of the muscle, nervous, digestive and reproductive systems. This review provides an overview of the oxidative and antioxidative properties of natural products based on the model organism C. elegans.
-
[
PLoS Negl Trop Dis,
2018]
We briefly review cysteine proteases (orthologs of mammalian cathepsins B, L, F, and C) that are expressed in flatworm and nematode parasites. Emphasis is placed on enzyme activities that have been functionally characterized, are associated with the parasite gut, and putatively contribute to degrading host proteins to absorbable nutrients [1-4]. Often, gut proteases are expressed as multigene families, as is the case with Fasciola [5] and Haemonchus [6], presumably expanding the range of substrates that can be degraded, not least during parasite migration through host tissues [5]. The application of the free-living planarian and Caenorhabditis elegans as investigative models for parasite cysteine proteases is discussed. Finally, because of their central nutritive contribution, targeting the component gut proteases with small-molecule chemical inhibitors and understanding their utility as vaccine candidates are active areas of research [7].
-
[
Wiad Parazytol,
2007]
Toll-like receptors (TLRs) are amongst the most highly conserved in the evolution of receptor family, being found in both immune and other cells. TLRs were observed in vascular endothelial cells, epithelial cells, microglia cells, adipocytes, and intestinal and renal cells. TLRs plays a key role in the innate immune response to a variety of pathogens. At present, very little is known about the role of TLRs in host defense against parasitic pathogen infections. The first study shows that TLRs contribute to both innate and adaptive immune responses following infection with protozoan parasite Leishmania major. The TLRs recognizing PAMPs associated with the parasite L. major are essential for the activation of the innate and adaptive immune responses to infection. A study concerning recognition of the role of TLRs in the host-parasite relationship would be an interesting challenge for future study.
-
[
Trends in Genetics,
1994]
Recently, Krishnan et al. Reported the cloning and sequencing of the Drosophila shaking-B (shakB; alias Passover, or Pas) gene, required for the jump response to an optical stimulus. The predicted gene product was similar to those of both the Drosophila gene lethal (1) optic ganglion reduced [l(1)ogre] and the Caenorhabditis elegans gene
unc-7, which together define a new family of evolutionarily conserved proteins that may be membrane-associated. Below I describe three additional members of this family, as identified by sequence homologies. An alignment of all these sequences permits a more informed prediction of the general structure of members of this family. The structure is that of a new type of multipass transmembrane protein. On the basis of the phenotypes of mutant organisms, I suggest that the encoded proteins may be members of a family of invertebrate
-
[
Adv Protein Chem,
2001]
Biochemical characterization of the yeast prions has revealed many similarities with the mammalian amyloidogenic proteins. The ease of generating in vivo mutations in yeast and the developing in vitro models for [PSI+] and [URE3] circumvent many of the difficulties of studying the proteins linked to the mammalian amyloidoses. Future work especially aimed at understanding the molecular role of chaperone proteins in regulating conversion as well as the early steps in de novo formation of the prion state in yeast will likely provide invaluable lessons that may be more broadly applicable to related processes in higher eukaryotes. It is important to remember, however, that there are clear distinctions between disease states associated with amyloidogenesis and the epigenetic modulation of protein function by self-perpetuating conformational conversions. Amyloid formation is detrimental to mammals and is likely selected against, providing a possible explanation for the late onset of these disorders (Lansbury, 1999). In contrast, the known yeast prions are compatible with normal growth and, if beneficial to the organism, may be subject to evolutionary pressures that ultimately maximize transmission. In the prion proteins examined to date, distinct domains are responsible for normal function and for the conformational switches producing a prion conversion of that function. Recent work has demonstrated that the prion domains are both modular and transferable to other proteins on which they can confer a heritable epigenetic alteration of function (Edskes et al., 1999; Li and Lindquist, 2000; Patino et al., 1996; Santoso et al., 2000; Sondheimer and Lindquist, 2000). That is, prion domains need not coevolve with particular functional domains but might be moved from one protein to another during evolution. Such processes may be widely used in biology. Mechanistic studies of [PSI+] and [URE3] replication are sure to lay a foundation of knowledge for understanding a host of nonconventional genetic elements that currently remain elusive.