-
[
MicroPubl Biol,
2020]
Mechanisms of chemotactic behaviors have been of great interest in C. elegans neuroscience since the early days of its research (Ward 1973). Lewis and Hodgkin (1977) systematically isolated more than ten abnormal chemotaxis (che) mutants that showed defective chemotaxis to sodium (Na+) and chloride (Cl-) ions (Lewis and Hodgkin 1977), whose responsible genes have already been molecularly characterized except for
che-5(
e1073). We here show that
che-5(
e1073) is a missense allele of
gcy-22, which encodes a receptor guanylyl cyclase (rGC) specifically expressed in the ASE-right (ASER) gustatory neuron and is essential for chemosensation through the neuron.
-
[
Water Res,
2009]
Nematodes, which occur abundantly in granular media filters of drinking water treatment plants and in distribution systems, can ingest and transport pathogenic bacteria and provide them protection against chemical disinfectants. However, protection against UV disinfection had not been investigated to date. In this study, Caenorhabditis elegans nematodes (wild-type strain N2) were allowed to feed on Escherichia coli OP50 and Bacillus subtilis spores before being exposed to 5 and 40 mJ/cm(2) UV fluences, using a collimated beam apparatus (LP, 254 nm). Sonication (15 W, 60s) was used to extract bacteria from nematode guts following UV exposure in order to assess the amount of ingested bacteria that resisted the UV treatment using a standard culture method. Bacteria located inside the gut of C. elegans were shown to benefit from a significant protection against UV. Approximately 15% of the applied UV fluence of 40 mJ/cm(2) (as typically used in WTP) was found to reach the bacteria located inside nematode guts based on the inactivation of recovered bacteria (2.7 log reduction of E. coli bacteria and 0.7 log reduction of B. subtilis spores at 40 mJ/cm(2)). To our knowledge, this study is the first demonstration of the protection effect of bacterial internalization by higher organisms against UV treatment, using the specific case of E. coli and B. subtilis spores ingested by C. elegans.
-
[
Evolution,
2023]
Does gene flow disrupt or facilitate the evolution of parasite resistance in host populations? Lewis et al. (2023) use a host-parasite system consisting of Caenorhabditis elegans (host) and Serratia marcescens (parasite) to test the effect of gene flow on adaptation. They find that gene flow from parasite-resistant host populations with divergent genetic backgrounds promotes adaptation in parasites (increased resistance). Findings from this study can be used to address more complex cases of gene flow and can be applied in conservation efforts.
-
[
Biochem Soc Trans,
2000]
Using a combination of database-mining and functional characterization, we have identified a component of the polyunsaturated fatty acid (PUFA) elongase. Co-expression of this elongating activity with fatty acid desaturases has allowed us to heterologously reconstitute the PUFA biosynthetic pathway. Both these enzymes (desaturases and elongase components) have undergone gene-duplication events which provide a paradigm for the diverged nature of PUFA biosynthetic activities.
-
[
FEBS Lett,
1998]
We have identified a cDNA from the nematode worm Caenorhabditis elegans that encodes a fatty acid delta5 desaturase. Saccharomyces cerevisiae expressing the full-length cDNA was able to convert di-homo-gamma-linolenic acid to arachidonic acid, thus confirming delta5 desaturation. The 1341 bp delta5 desaturase sequence contained an N-terminal cytochrome
b5 domain and was located within a kilobase of the C. elegans delta6 desaturase on chromosome IV. With an amino acid identity of 45% it is possible that one of these genes arose from the other by gene duplication. This is the first example of a delta5 desaturase gene isolated from an animal.
-
[
Proc Natl Acad Sci U S A,
2000]
A Caenorhabditis elegans ORF encoding the presumptive condensing enzyme activity of a fatty acid elongase has been characterized functionally by heterologous expression in yeast. This ORF (F56H11. 4) shows low similarity to Saccharomyces cerevisiae genes involved in fatty acid elongation. The substrate specificity of the C. elegans enzyme indicated a preference for Delta(6)-desaturated C18 polyunsaturated fatty acids. Coexpression of this activity with fatty acid desaturases required for the synthesis of C20 polyunsaturated fatty acids resulted in the accumulation of arachidonic acid from linoleic acid and eicosapentaenoic acid from alpha-linolenic acid. These results demonstrate the reconstitution of the n-3 and n-6 polyunsaturated fatty acid biosynthetic pathways. The C. elegans ORF is likely to interact with endogenous components of a yeast elongation system, with the heterologous nematode condensing enzyme F56H11.4 causing a redirection of enzymatic activity toward polyunsaturated C18 fatty acid substrates.
-
[
Glycobiology,
2005]
Core alpha1,6-fucosylation is a conserved feature of animal N-linked oligosaccharides being present in both invertebrates and vertebrates. To prove that the enzymatic basis for this modification is also evolutionarily conserved, cDNAs encoding the catalytic regions of the predicted Caenorhabditis elegans and Drosophila melanogaster homologs of vertebrate alpha1,6-fucosyltransferases (E.C. 2.4.1.68) were engineered for expression in the yeast Pichia pastoris. Recombinant forms of both enzymes were found to display core fucosyltransferase activity as shown by a variety of methods. Unsubstituted non-reducing terminal GlcNAc residues appeared to be an obligatory feature of the substrate for the recombinant Caenorhabditis and Drosophila alpha1,6-fucosyltransferases, as well as for native Caenorhabditis and Schistosoma mansoni core alpha1,6-fucosyltransferases. On the other hand, these alpha1,6-fucosyltransferases could not act on N-glycopeptides already carrying core alpha1,3-fucose residues, whereas recombinant Drosophila and native Schistosoma core alpha1,3-fucosyltransferases were able to use core alpha1,6-fucosylated glycans as substrates. Lewis-type fucosylation was observed with native Schistosoma extracts and could take place after core alpha1,3-fucosylation, whereas prior Lewis-type fucosylation precluded the action of the Schistosoma core alpha1,3-fucosyltransferase. Overall, we conclude that the strict order of fucosylation events, previously determined for fucosyltransferases in crude extracts from insect cell lines (core alpha1,6 before core alpha1,3), also applies for recombinant Drosophila core alpha1,3- and alpha1,6-fucosyltransferases as well as for core fucosyltransferases in schistosomal egg extracts.
-
[
J Cell Biol,
2020]
Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.
-
[
FEBS J,
2007]
In recent years, the glycoconjugates of many parasitic nematodes have attracted interest due to their immunogenic and immunomodulatory nature. Previous studies with the porcine roundworm parasite Ascaris suum have focused on its glycosphingolipids, which were found, in part, to be modified by phosphorylcholine. Using mass spectrometry and western blotting, we have now analyzed the peptide N-glycosidase A-released N-glycans of adults of this species. The presence of hybrid bi- and triantennary N-glycans, some modified by core alpha1,6-fucose and peripheral phosphorylcholine, was demonstrated by LC/electrospray ionization (ESI)-Q-TOF-MS/MS, as was the presence of paucimannosidic N-glycans, some of which carry core alpha1,3-fucose, and oligomannosidic oligosaccharides. Western blotting verified the presence of protein-bound phosphorylcholine and core alpha1,3-fucose, whereas glycosyltransferase assays showed the presence of core alpha1,6-fucosyltransferase and Lewis-type alpha1,3-fucosyltransferase activities. Although, the unusual tri- and tetrafucosylated glycans found in the model nematode Caenorhabditis elegans were not found, the vast majority of the N-glycans found in A. suum represent a subset of those found in C. elegans; thus, our data demonstrate that the latter is an interesting glycobiological model for parasitic nematodes.
-
[
Genetics,
1980]
We have characterized a small group of genes (13 loci) in the nematode Caenorhabditis elegans that, when mutated, confer resistance to the potent anthelmintic levamisole. Mutants at the 7 loci conferring the most extreme resistance generally possess almost identical visible and pharmacological phenotypes: uncoordinated motor behavior, most severe in early larval life, extreme resistance to cholinergic agonists and sensitivity to hypo-osmotic shock. Mutants with exceptional phenotypes suggest possible functions for several of the resistance loci. The most extreme mutants can readily be selected by their drug resistance (211 mutants, as many as 74 alleles of one gene). The more common resistance loci are likely to be unessential genes, while loci identified by only a few alleles may be essential genes or genes conferring resistance only when mutated in a special way. We propose that these mutants represent a favorable system for understanding how a small group of related genes function in a simple animal. The extreme drug resistance of these mutants makes them useful tools for the genetic manipulation of C. elegans. And, as the most resistant class of mutants might lack pharmacologically functional acetyl-choline receptors (LEWIS et al. 1980), these mutants may also be of some neurobiological significance.