-
[
Nucleus,
2015]
The nuclear envelope consists of 2 membranes separated by 30-50 nm, but how the 2 membranes are evenly spaced has been an open question in the field. Nuclear envelope bridges composed of inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins have been proposed to set and regulate nuclear envelope spacing. We tested this hypothesis directly by examining nuclear envelope spacing in Caenorhabditis elegans animals lacking UNC-84, the sole somatic SUN protein. SUN/KASH bridges are not required to maintain even nuclear envelope spacing in most tissues. However, UNC-84 is required for even spacing in body wall muscle nuclei. Shortening UNC-84 by 300 amino acids did not narrow the nuclear envelope space. While SUN proteins may play a role in maintaining nuclear envelope spacing in cells experiencing forces, our data suggest they are dispensable in most cells.
-
[
Dev Dyn,
2010]
The invariant cell division patterns that characterize Caenorhabditis elegans development make it an ideal system to study the mechanisms that control nuclear movement and positioning. Forward genetic screens in this system allowed identification of the key molecular machinery for connecting the nucleus to the cytoskeleton; pairs of protein partners, consisting of a KASH domain protein and a SUN domain protein, bridge the nuclear envelope to connect the nucleus to cytoskeletal components. The C. elegans genome encodes several KASH/SUN pairs, and mutant phenotypes as well as tissue-specific expression patterns suggest a diversity of functions. These functions include moving the nucleus but have been extended to effects on the chromosomes inside the nucleus as well. We review the impact of the C. elegans system in pioneering this field as well as the functions of these KASH/SUN protein pairs across spatial and temporal C. elegans development.
-
[
Curr Top Dev Biol,
2014]
The LINC complex spans the nuclear envelope and plays critical roles in coordinating nuclear and cytoplasmic activities and in organizing nuclear and cytoskeletal features. LINC complexes are assembled from KASH and SUN-domain proteins, which interact in the nuclear envelope and form a physical link between the cytoskeleton and the nuclear interior. A number of diseases have been associated with mutations in genes coding for LINC complex proteins. Mouse models of LINC complex protein have provided valuable insight into LINC complex functions and into how these proteins contribute to the various diseases with which they have been associated.
-
[
Bioessays,
2008]
Predicting the phenotype of an organism from its genotype is a central question in genetics. Most importantly, we would like to find out if the perturbation of a single gene may be the cause of a disease. However, our current ability to predict the phenotypic effects of perturbations of individual genes is limited. Network models of genes are one tool for tackling this problem. In a recent study, (Lee et al.) it has been shown that network models covering the majority of genes of an organism can be used for accurately predicting phenotypic effects of gene perturbations in multicellular organisms. BioEssays 30:707-710, 2008. (c) 2008 Wiley Periodicals, Inc.
-
[
J Cell Sci,
2003]
Mechanisms for nuclear migration and nuclear anchorage function together to control nuclear positioning. Both tubulin and actin networks play important roles in nuclear positioning. The actin cytoskeleton. has been shown to position nuclei in a variety of systems from yeast to plants and animals. It can either act as a stable skeleton to anchor nuclei or supply the active force to move nuclei. Two C elegans genes and their homologues play important roles in these processes. Syne/ANC-1 anchors nuclei by directly tethering the nuclear envelope to the actin cytoskeleton, and UNC-84/SUN functions at the nuclear envelope to recruit Syne/ANC-1.
-
[
J Cell Sci,
2006]
The nucleus in eukaryotic cells can move within the cytoplasm, and its position is crucial for many cellular events, including migration and differentiation. Nuclear anchorage and movement can be achieved through association of outer nuclear membrane (ONM) proteins with the three cytoskeletal systems. Two decades ago studies described C. elegans mutants with defects in such events, but only recently has it been shown that the strategies for nuclear positioning are indeed conserved in C. elegans, Drosophila, mammals and potentially all eukaryotes. The integral ONM proteins implicated in these processes thus far all contain a conserved Klarsicht/ANC-1/Syne homology (KASH) domain at their C-terminus that can associate with Sad1p/UNC-84 (SUN)-domain proteins of the inner nuclear membrane within the periplasmic space of the nuclear envelope (NE). The complex thus formed is responsible not only for association with cytoplasmic elements but also for the integrity of the NE itself.
-
[
Chromosoma,
2014]
Rapid chromosome movement during prophase of the first meiotic division has been observed in many organisms. It is generally concomitant with formation of the "meiotic chromosome bouquet," a special chromosome configuration in which one or both chromosome ends attach to the nuclear envelope and become concentrated within a limited area. The precise function of the chromosomal bouquet is still not fully understood. Chromosome mobility is implicated in homologous chromosome pairing, synaptonemal complex formation, recombination, and resolution of chromosome entanglements. The basic mechanistic module through which forces are exerted on chromosomes is widely conserved; however, phenotypic differences have been reported among various model organisms once movement is abrogated. Movements are transmitted to the chromosome ends by the nuclear membrane-bridging SUN/KASH complex and are dependent on cytoskeletal filaments and motor proteins located in the cytoplasm. Here we review the recent findings on chromosome mobility during meiosis in an animal model system: the Caenorhabditis elegans nematode.
-
[
J Cell Sci,
2016]
Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders.
-
[
1980]
A number of review articles on the nematode cuticle have been published in the last decade. The most recent of these are those of Bird and Lee and Atkinson. These authors, while emphasizing the complexity and variability of nematode cuticles, support the use of a simplified nomenclature of cuticle structure which divides the cuticle into three regions or zones-namely, cortical, median, and basal. It is obvious that many exceptions to this fundamental pattern occur, and I shall mention some of these below. However, I think that they are adaptations to survival in changing environments, particularly where parasitism is involved. In particular, I propose to consider the structure and functions of the surface or epicuticle of the cortical zone, for it is here that reactions similar to those occurring at cell surfaces and in cell membranes are thought to occur in a wide range of "helminth" organisms. At the moment, particularly for the Nematoda, these ideas require more experimental evidence to establish them as facts. However, the use of sensitive techniques currently employed by membrane physicists and chemists to isolate, label, analyze, measure, and observe interactions taking place in cell membranes have in many instances yet to be used on the nematode cuticle. There is no doubt that the free-living bacterial-feeding nematodes such as those belonging to the genus Caenorhabditis, and in particular C. elegans, are the experimental models of choice for this purpose.
-
[
Crit Rev Biochem Mol Biol,
2012]
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Marino-Ramirez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Hakkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.