-
[
Cell Metab,
2009]
Insulin is essential for glucose homeostasis, but reducing its activity delays the aging process in model organisms. In this issue of Cell Metabolism, Lee et al. (2009) show how these effects of insulin signaling intersect when glucose is fed to C. elegans.
-
[
J Cell Biol,
2020]
The mechanisms that control how the two parental pronuclei fuse in the first mitosis of the embryo are poorly understood. In this issue, Rahman et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.201909137) found that membrane fusion between pronuclear envelopes, followed by fenestration, promotes pronuclear fusion.
-
[
J Cell Biol,
2019]
In this issue, Zhang et al. (2019. <i>J. Cell. Biol.</i> https://doi.org/10.1083/jcb.201907196) describe a molecular mechanism by which cuticular damage in the nematode <i>C. elegans</i> leads to systemic induction of autophagy by signals propagated from sensory neurons via the TGF- signaling pathway.
-
[
J Cell Biol,
2022]
During cytokinesis, microtubules become compacted into a dense midbody prior to abscission. Using genetic perturbations and imaging of C. elegans zygotes, Hirsch et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202011085) uncover an unexpected source of microtubules that can populate the midbody when central spindle microtubules are missing.
-
[
Nature,
1992]
Supporters of large DNA sequencing projects will take heart (and find much to learn) from the report by J. Sulston and colleagues that appears on page 37 of this issue. Sulston et al. describe the first results of the Caenorhabditis elegans genome sequencing project, and have come up with not only hitherto unknown genes but also with fresh and biologically relevant information.
-
[
Dev Cell,
2015]
Adherens junctions (AJs) play a crucial role in epithelial tissue development and tumorigenesis, and the mechanisms controlling their assembly and disassembly have therefore attracted considerable attention. A paper from Tsur et al. (2015) in this issue of Developmental Cell now shows how sumoylation and desumoylation of E-cadherin promotes its recruitment to AJs.
-
[
Cell Metab,
2013]
The mechanisms underlying the biological activity of metformin, a widely prescribed drug to treat type 2 diabetes, remain elusive. In a recent issue of Cell, Cabreiro et al. report that in C. elegans, metformin indirectly impacts lifespan by altering the methionine metabolism of its microbial partner E. coli (Cabreiro et al., 2013).
-
[
BMC Biol,
2012]
In a paper in BMC Biology Virk et al. show that Caenorhabditis elegans lifespan is extended in response to a diet of folate-deficient Escherichia coli. The deficiencies in folate biosynthesis were due to an aroD mutation, or treatment of E. coli with sulfa drugs, which are mimics of the folate precursor para-aminobenzoic acid. This study suggests that pharmacological manipulation of the gut microbiome folate status may be a viable approach to slow animal aging, and raises questions about folate supplementation.
-
[
Gut Microbes,
2013]
The fungus Candida albicans and the gram-positive bacterium Enterococcus faecalis are both normal residents of the human gut microbiome and cause opportunistic disseminated infections in immunocompromised individuals. Using a nematode infection model, we recently showed that co-infection resulted in less pathology and less mortality than infection with either species alone and this was partly explained by an interkingdom signaling event in which a bacterial-derived product inhibits hyphal morphogenesis of C. albicans. In this addendum we discuss these findings in the contest of other described bacterial-fungal interactions and recent data suggesting a potentially synergistic relationship between these two species in the mouse gut as well. We suggest that E. faecalis and C. albicans promote a mutually beneficial association with the host, in effect choosing a commensal lifestyle over a pathogenic one.
-
[
J Neurophysiol,
2007]
The work of Clark et al. in this issue of J. Neurophysiology extends the analysis of thermotaxis in C. elegans by providing a detailed analysis of the adaptation of thermotactic behavior. Previous work indicates that thermotaxis in C. elegans involves a biased random walk in which changes in temperature alter the duration of the runs that an animal makes between turns. Interestingly, the authors find that although behavioral responses to increases and decreases in temperature have opposite effects on run length, the two responses are of similar magnitude and adapt with similar kinetics. These properties are predicted to allow the system act as a band-pass filter that would be less sensitive to temperature fluctuations occurring on a time-scale significantly faster or slower than the time needed for an average run. This analysis of C. elegans thermotaxis raises potential parallels to bacterial chemotaxis, with the kinetics of adaptation playing an important role in determining the ability of the organism to sense a stimulus gradient. This raises the possibility that diverse organisms may exploit similar system properties to solve similar problems, such as the problem of responding robustly to subtle gradations in an external stimulus.