-
[
Worm Breeder's Gazette,
2001]
La quatrieme reunion annuelle des equipes francaises ayant un interet pour C. elegans se tiendra le Vendredi 23 fevrier 2001 a Luminy, Marseille. Contact: pujol@ibdm.univ-mrs.fr ewbank@ciml.univ-mrs.fr
-
[
International Worm Meeting,
2011]
Acyl-CoA esters, the metabolically active form of fatty acids, are important intermediates in both anabolic and catabolic processes, but have also been identified as regulators of ion channels, enzymes, membrane fusion, and gene expression. Acyl-CoA binding protein (ACBP) is a small, primarily cytosolic protein, which binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, and the gene encoding the basal form displays all the hallmarks of a housekeeping gene, indicating that ACBP performs a basal cellular function. However, the existence of several ACBP paralogues in many eukaryotic species and differential tissue expression indicate that these proteins serve distinct functions. Studies in other model organisms have implicated ACBPs in triglyceride storage, lipid synthesis, autophagy, cold tolerance, and skin barrier function. C. elegans expresses seven functional ACBPs; four basal forms and three ACBP domain proteins. In the present study, we have obtained mutants with functional loss of each of six of the ACBPs and characterized their macroscopic and biochemical phenotypes. The seventh paralogue Membrane-Associated ACBP-1 has been shown to be involved in endosomal vesicle transport. We find that each of the six paralogues is capable of complementing growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns. All acbp single mutants display only subtle phenotypes, likely due to compensatory mechanisms and some extent of functional redundancy. ACBP-1 is shown to be involved in triglyceride storage and lipid droplet morphology. ACBP-2, containing an enoyl-CoA hydratase domain, is necessary for b-oxidation of unsaturated fatty acids, and ACBP-3 is needed for normal skin barrier function. We have generated a quadruple mutant, which we are currently investigating. This mutant is developmentally delayed compared to N2, and preliminary data suggest that it increases its b-oxidation of exogenous fatty acids, suggesting that lack of all basal ACBPs elicits a starvation-like phenotype.
-
[
Parasite Immunol,
2009]
Among the causes of lymphoedema (LE), secondary LE due to filariasis is the most prevalent. It affects only a minority of the 120 million people infected with the causative organisms of lymphatic filariasis (LF), Wuchereria bancrofti and Brugia malayi/timori, but is clustered in families, indicating a genetic basis for development of this pathology. The majority of infected individuals develop filarial-specific immunosuppression that starts even before birth in cases where mothers are infected and is characterized by regulatory T-cell responses and high levels of IgG4, thus tolerating high parasite loads and microfilaraemia. In contrast, individuals with this pathology show stronger immune reactions biased towards Th1, Th2 and probably also Th17. Importantly, as for the aberrant lymph vessel development, innate immune responses that are triggered by the filarial antigen ultimately result in the activation of vascular endothelial growth factors (VEGF), thus promoting lymph vessel hyperplasia as a first step to lymphoedema development. Wolbachia endosymbionts are major inducers of these responses in vitro, and their depletion by doxycycline in LF patients reduces plasma VEGF and soluble VEGF-receptor-3 levels to those seen in endemic normals preceding pathology improvement. The search for the immunogenetic basis for LE could lead to the identification of risk factors and thus, to prevention; and has so far led to the identification of single-nucleotide polymorphisms (SNP) with potential functional relevance to VEGF, cytokine and toll-like receptor (TLR) genes. Hydrocele, a pathology with some similarity to LE in which both lymph vessel dilation and lymph extravasation are shared sequelae, has been found to be strongly associated with a VEGF-A SNP known for upregulation of this (lymph-)angiogenesis factor.
-
[
J Neurosci,
2003]
Thermotactic behavior in Caenorhabditis elegans is sensitive to both a worm's ambient temperature (T-amb) and its memory of the temperature of its cultivation (T-cult). The AFD neuron is part of a neural circuit that underlies thermotactic behavior. By monitoring the fluorescence of pH-sensitive green fluorescent protein localized to synaptic vesicles, we measured the rate of the synaptic release of AFD in worms cultivated at temperatures between 15 and 25degreesC, and subjected to fixed, ambient temperatures in the same range. We found that the rate of AFD synaptic release is high if either T-amb > T-cult or T-amb > T-cult, but AFD synaptic release is low if T-amb congruent to T-cult. This suggests that AFD encodes a direct comparison between T-amb and T-cult.
-
[
Hermann, Editeurs des Sciences et des Arts. Paris, France.,
2002]
L'espce Caenorhabditis elegans fut dcrite en 1900 Alger par E. Maupas, qui s'intressait son mode de reproduction hermaphrodite. Plus tard, vers le milieu du vingtime sicle, V. Nigon et ses collaboratuers Lyon tudirent les reorganizations cellulaires accompagnant la fecundation et les premiers clivages. J. Brun isola les preiers mutants morpholgiques.
-
[
Cell Biol Int Rep,
1987]
Multiple synaptonemal complexes (polycomplexes) (PC) are similar in structure to synaptonemal complexes (SC) and are also highly conserved through evolution. They have been described in over 70 organisms throughout all life forms. The appearance of PCs are restricted to meiotic and germ-line derived tissues and are most commonly present after SC formation. However, in a number of animals and plants, both extra- and intranuclear PCs are present during premeiotic and pre-pachytene stages. The structure and biochemical composition of PCs is similar to SCs that the basic unit is tripartite, consisting of two lateral elements and a central region (in which transverse elements are located), and the dimensions of such structures are equivalent. Stacking of SC subunits, while still maintaining equivalent SC dimensions, creates a problem since the lateral elements (LE) would then be twice as thick in the PC as compared to the SC. Recently, it has been shown that the LE of the SC is actually multistranded, thus the LE of each subunit of the PC is half as thick as its counterpart in the SC.
-
[
Southeast Asian J Trop Med Public Health,
1985]
Infective larvae of subperiodic B. malayi from South Kalimantan (Borneo), Indonesia collected from laboratory-raised Ae. togoi mosquitoes after feeding on infected mongolian gerbils (Meriones unguiculatus) were inoculated subcutaneously into the groin areas of 15 SD and 36 LE rats. Blood was examined weekly by membrane filtration and thick smears starting 10 weeks post-infection. Microfilariae were found in 3 SD and 4 LE rats, the mf infection rate of 20% and 11% respectively. The prepatent period was significantly shorter in the SD rats (99-112 days) than those in the LE rats (110-153 days). The patent period was longer in the LE rats (208-703 days) than in the SD rats (236-543 days), and the mf density was similar (17.5 mf/20 c.mm blood against 16 mf/20 c.mm blood). At necropsy, 6 (3 female and 3 male) adult worms were recovered from 3 of 6 SD rats and 12 (9 female and 3 male) adult worms from 4 of 20 LE rats; all worms were found in the testes. The results of xenodiagnostic, histochemical staining and measuring spicules and protuberances, demonstrated clearly the difference between both species of Brugia. All dissected Ar. subalbatus mosquitoes exposed to B. pahangi became infected (100%), but none of those to subperiodic B. malayi were infected (0%). The mf of both species of Brugia in thick films stained with naphthol-AS-TR-phosphate showed that the excretory and anal pores of subperiodic B. malayi mf exhibited acid phosphatase activity and only a little activity was seen in other parts; while B. pahangi mf showed heavy diffuse acid phosphatase activity along the entire length of the body.(ABSTRACT TRUNCATED AT 250 WORDS)
-
[
Trends Mol Med,
2007]
Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (T(reg))-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca(2+)-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in T(reg) cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (T(h) IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.
-
[
Genomics,
1995]
Recently, a novel family of genes with a region of homology to the mouse T locus, which is known to play a crucial, and conserved, role in vertebrate development, has been discovered. The region of homology has been named the T-box. The T-box domain of the prototypical T locus product is associated with sequence-specific DNA binding activity. In this report, we have characterized four members of the T-box gene family from the nematode Caenorhabditis elegans. All lie in close proximity to each other in the middle of chromosome III. Homology analysis among all completely sequenced T-box products indicates a larger size for the conserved T-box domain (166 to 203 residues) than previously reported. Phylogenetic analysis suggests that one C. elegans T-box gene may be a direct ortholog of the mouse Tbx2 and Drosophila omb genes. The accumulated data demonstrate the ancient nature of the T-box gene family and suggest the existence of at least three separate T-box-containing genes in a common early metazoan ancestor to nematodes and vertebrates.
-
[
International Worm Meeting,
2015]
We study the natural coevolution between Caenorhabditis briggsae and its two recently described RNA viruses called Santeuil and Le Blanc (1, 2). The main advantage of this system is to combine the access to wild host and virus populations with powerful molecular tools and experimental evolution designs. We characterized the incidence of the two C. briggsae viruses in France and found that they are found in sympatry. By monitoring the viral RNAs in wild-caught C. briggsae isolates using Fluorescent In Situ Hybridization, we demonstrated that the Le Blanc and Santeuil viruses could coexist in one host population, one animal and one intestinal cell. Molecular variation of the wild-caught viruses was assessed by sequencing their two RNA molecules. While both viruses' diversities are geographically structured, we detected balancing selection on the RNA-dependent RNA polymerase (RdRp) locus in one local Santeuil population. Despite the frequent incidence of coinfection in the wild, we found no evidence for genetic exchange (recombination or RNA reassortment) between the Santeuil and Le Blanc viruses. However, we found clear evidence for RNA reassortment between different Santeuil virus variants. Finally, we investigated natural variation in C. briggsae resistance to each virus. We tested a set of wild isolates -representative of C. briggsae worldwide diversity- for their sensitivity to the Santeuil and Le Blanc viruses. While temperate C. briggsae genotypes are generally susceptible to both viruses, the tested tropical C. briggsae genotypes are resistant to both viruses. Most interestingly, two Japanese C. briggsae genotypes show specific resistance to the Le Blanc virus. To understand the genetic basis of the general and virus-specific resistances of C. briggsae, we carried out a QTL-mapping approach using recombinant inbred lines between AF16 and HK104 (3) and identified a main QTL region on chromosome IV responsible for the variation in resistance to Santeuil virus infection.(1) Felix, Ashe, Piffaretti et al. 2011 PloS Biology. (2) Franz et al. 2012 Journal of Virology. (3) Ross et al. 2011 PLoS Genetics..