-
[
Genome Biol,
2000]
SUMMARY: The F-box is a protein motif of approximately 50 amino acids that functions as a site of protein-protein interaction. F-box proteins were first characterized as components of SCF ubiquitin-ligase complexes (named after their main components, Skp I, Cullin, and an F-box protein), in which they bind substrates for ubiquitin-mediated proteolysis. The F-box motif links the F-box protein to other components of the SCF complex by binding the core SCF component Skp I. F-box proteins have more recently been discovered to function in non-SCF protein complexes in a variety of cellular functions. There are 11 F-box proteins in budding yeast, 326 predicted in Caenorhabditis elegans, 22 in Drosophila, and at least 38 in humans. F-box proteins often include additional carboxy-terminal motifs capable of protein-protein interaction; the most common secondary motifs in yeast and human F-box proteins are WD repeats and leucine-rich repeats, both of which have been found to bind phosphorylated substrates to the SCF complex. The majority of F-box proteins have other associated motifs, and the functions of most of these proteins have not yet been defined.
-
[
Hermann, Editeurs des Sciences et des Arts. Paris, France.,
2002]
L'espce Caenorhabditis elegans fut dcrite en 1900 Alger par E. Maupas, qui s'intressait son mode de reproduction hermaphrodite. Plus tard, vers le milieu du vingtime sicle, V. Nigon et ses collaboratuers Lyon tudirent les reorganizations cellulaires accompagnant la fecundation et les premiers clivages. J. Brun isola les preiers mutants morpholgiques.
-
[
Cell Biol Int Rep,
1987]
Multiple synaptonemal complexes (polycomplexes) (PC) are similar in structure to synaptonemal complexes (SC) and are also highly conserved through evolution. They have been described in over 70 organisms throughout all life forms. The appearance of PCs are restricted to meiotic and germ-line derived tissues and are most commonly present after SC formation. However, in a number of animals and plants, both extra- and intranuclear PCs are present during premeiotic and pre-pachytene stages. The structure and biochemical composition of PCs is similar to SCs that the basic unit is tripartite, consisting of two lateral elements and a central region (in which transverse elements are located), and the dimensions of such structures are equivalent. Stacking of SC subunits, while still maintaining equivalent SC dimensions, creates a problem since the lateral elements (LE) would then be twice as thick in the PC as compared to the SC. Recently, it has been shown that the LE of the SC is actually multistranded, thus the LE of each subunit of the PC is half as thick as its counterpart in the SC.
-
[
Parasite Immunol,
2009]
Among the causes of lymphoedema (LE), secondary LE due to filariasis is the most prevalent. It affects only a minority of the 120 million people infected with the causative organisms of lymphatic filariasis (LF), Wuchereria bancrofti and Brugia malayi/timori, but is clustered in families, indicating a genetic basis for development of this pathology. The majority of infected individuals develop filarial-specific immunosuppression that starts even before birth in cases where mothers are infected and is characterized by regulatory T-cell responses and high levels of IgG4, thus tolerating high parasite loads and microfilaraemia. In contrast, individuals with this pathology show stronger immune reactions biased towards Th1, Th2 and probably also Th17. Importantly, as for the aberrant lymph vessel development, innate immune responses that are triggered by the filarial antigen ultimately result in the activation of vascular endothelial growth factors (VEGF), thus promoting lymph vessel hyperplasia as a first step to lymphoedema development. Wolbachia endosymbionts are major inducers of these responses in vitro, and their depletion by doxycycline in LF patients reduces plasma VEGF and soluble VEGF-receptor-3 levels to those seen in endemic normals preceding pathology improvement. The search for the immunogenetic basis for LE could lead to the identification of risk factors and thus, to prevention; and has so far led to the identification of single-nucleotide polymorphisms (SNP) with potential functional relevance to VEGF, cytokine and toll-like receptor (TLR) genes. Hydrocele, a pathology with some similarity to LE in which both lymph vessel dilation and lymph extravasation are shared sequelae, has been found to be strongly associated with a VEGF-A SNP known for upregulation of this (lymph-)angiogenesis factor.
-
[
J Biosci,
2018]
Advanced fluorescence techniques, commonly known as the F-techniques, measure the kinetics and the interactions of biomolecules with high sensitivity and spatiotemporal resolution. Applications of the F-techniques, which were initially limited to cells, were further extended to study in vivo protein organization and dynamics in whole organisms. The integration of F-techniques with multi-photon microscopy and light-sheet microscopy widened their applications in the field of developmental biology. It became possible to penetrate the thick tissues of living organisms and obtain good signal-to-noise ratio with reduced photo-induced toxicity. In this review, we discuss the principle and the applications of the three most commonly used F-techniques in developmental biology: Fluorescence Recovery After Photo-bleaching (FRAP), Fo rster Resonance Energy Transfer (FRET), and Fluorescence Correlation and Cross-Correlation Spectroscopy (FCS and FCCS).
-
[
Clin Genet,
2006]
Labbe J-C, Roy R. New developmental insights from high-throughput biological analysis in Caenorhabditis elegans.The use of Caenorhabditis elegans as a model system for understanding animal development and human disease has long been recognized as an efficient tool of discovery. Recent developments, particularly in our understanding of RNA-mediated interference and its ability to modify gene activity, have facilitated the use of C. elegans in determining gene function via high-throughput analysis. These new strategies have provided a framework that allows investigators to analyse gene function globally at the genomic level and will likely become a prototypic model for biological analysis in the post-genome era.
-
[
Genes Dev,
2002]
The CM domain is a cysteine-rich DNA-binding motif first recognized in proteins encoded by the Drosophila set determination gene doublesex (Erdman and Burtis 1993; Zhu et al. 2000). As the name doublesex (dsx) suggests, this gene has functions in both sexes: Its transcripts undergo sex-specific alternative splicing, so that it can encode either a male-specific isoform, DSX(M), or a female-specific isoform, DSX(F) (Baker and Wolfner 1988; Burtis and Baker 1989). These proteins have the same N-terminal DNA-binding domain, but different C termini that confer different regulatory properties on the two forms. The expression of DSX(M) directs male development, and the expression of DSX(F) directs female development, throughout most of the somatic tissues of the fruit fly.
-
[
Trends in Cell Biology,
1997]
Nematodes produce amoeboid sperm that crawl over surfaces in a manner reminiscent of many actin-rich cells. However, These sperm contain no F-actin, and their motility is powered by a dynamic filament system composed of polymers of the 14-kDa major sperm protein (MSP). These simple cells use this unique motility apparatus exclusively for locomotion. Recent studies have capitalized on this feature to explore the key structural properties of MSP related to its role in motility and to reconstitute the motility apparatus both in vivo and in vitro. This review discusses how these investigations have laid the foundation for understanding the physical basis of amoeboid movement by identifying the mechanistic properties shared by the MSP-based machinery and the more familiar actin-based systems.
-
[
Trends Cell Biol,
2008]
A network of connections is established as neural circuits form between neurons. To make these connections, neurons initiate asymmetric axon outgrowth in response to extracellular guidance cues. Within the specialized growth cones of migrating axons, F-actin and microtubules asymmetrically accumulate where an axon projects forward. Although many guidance cues, receptors and intracellular signaling components that are required for axon guidance have been identified, the means by which the asymmetry is established and maintained is unclear. Here, we discuss recent studies in invertebrate and vertebrate organisms that define a signaling module comprising UNC-6 (the Caenorhabditis elegans ortholog of netrin), UNC-40 (the C. elegans ortholog of DCC), PI3K, Rac and MIG-10 (the C. elegans ortholog of lamellipodin) and we consider how this module could establish polarized outgrowth in response to guidance cues.
-
[
Cell Adh Migr,
2014]
Over 20 years ago, protrusive, F-actin-based membrane structures, termed invadopodia, were identified in highly metastatic cancer cell lines. Invadopodia penetrate artificial or explanted extracellular matrices in 2D culture conditions and have been hypothesized to facilitate the migration of cancer cells through basement membrane, a thin, dense, barrier-like matrix surrounding most tissues. Despite intensive study, the identification of invadopodia in vivo has remained elusive and until now their possible roles during invasion or even existence have remained unclear. Studies in remarkably different cellular contexts-mouse tumor models, zebrafish intestinal epithelia, and C. elegans organogenesis-have recently identified invadopodia structures associated with basement membrane invasion. These studies are providing the first in vivo insight into the regulation, function, and role of these fascinating subcellular devices with critical importance to both development and human disease.