-
[
Experientia,
1971]
Insect juvenile hormones (JH) or JH mimetics have been shown to affect development of nematodes: Trichinella spiralis larvae and fourth stage Phocanema decipiens were inhibited, and abnormal morphology was seen in Heterodera schactii. The effects of insect hormones and analogues on development of several free-living and parasitic nematodes cultured axenically are described in the present paper.
-
[
Front Physiol,
2013]
A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs), ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs), and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause) to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans.
-
[
Invest Ophthalmol Vis Sci,
2002]
PURPOSE: The presence of eosinophilic granulocytes in ocular tissue is a hallmark of the host response to environmental and parasite allergens. Using a mouse model of Onchocerca volvulus-mediated keratitis (river blindness), the present study examined the role of the cytokines interleukin (IL)-4 and IL-13 in regulating recruitment of eosinophils to the cornea through expression of intercellular cell adhesion molecule (ICAM)-1. METHODS: C57BL/6 mice received an intrastromal injection of recombinant IL-4 and IL-13 (rIL-4 and IL-13) or were immunized by subcutaneous injection prior to receiving an intrastromal injection of a soluble O. volvulus extract. Expression of ICAM-1 and recruitment of eosinophils to the cornea were monitored by immunohistochemistry. RESULTS: Expression of ICAM-1 was elevated after injection of rIL-4 or IL-13 together with recombinant tumor necrosis factor (rTNF)-alpha. Conversely, expression of ICAM-1 in O. volvulus-mediated keratitis was significantly reduced after subconjunctival injection of a monoclonal antibody (mAb) to IL-4 or IL-13. In addition, combined in vivo neutralization of IL-4 and IL-13 inhibited recruitment of eosinophils, but not of neutrophils, to the corneal stroma. CONCLUSIONS: These findings demonstrate that expression of ICAM-1 and recruitment of eosinophils to the cornea are tightly regulated by IL-4 and IL-13, and indicate that these cytokines are a potential target for immune intervention in ocular allergy and parasitic infections of the eye.
-
[
General & Comparative Endocrinology,
1989]
Fourteen 7-alkoxy-2,2-dimethylchromenes were synthetized and studied in JH competition experiments: prococenes (Ps) PI and PII, and synthetic analogs (PAs) including (i) three with both antiallatal and P-like activities: 7-ethoxy-PII (7-EPII); 7-(
prop-2-ynyloxy)-2,2-dimethylchromene (PPI); and 6-methoxy-7-(
prop-2-yynyloxy)-2,2-dimethylchromene (PPIII); (ii) six without antiallatal activity, exerting P-like activity in nematodes; and (iii) three without either antiallatal or P-like activity, but with a strong nematocidal effect. Within the dose range 8-1000 ug/ml, different concentrations of each PA were applied to nematode growth medium which did or did not contain 1000 ug methoprene (a juvenile hormone analog JHA)/ml. Plates inoculated with Caenorhabditis embryos were incubated and scored for developmentally affected survivors. The JHA did not compete with any PA mentioned as (iii). It competed moderately with some nonantiallatal PAs (8-Me-PPI, 8-MeO-PPI, and 3,4-diCl-PPI) with strong P-like and nematocidal activities. The JHA competed most efficiently with all Ps, antiallatal PAs, and two nonantiallatal PAs (PPII and thio-PI) which exerted severe P-like activities in nematodes. Parameters assumed to be indicators of the P-like (rather than nematocidal) activity of the PAs proved more sensitive to the JHA than those of nematocidal activity. Whether the JH-compensable P-like activity of some PAs can be regarded as a real anti-JH action needs further clarification.
-
Abdelmesieh M, Patel P, Wang T, Tower J, Wang L, Fan Y, Promislow DEL, Doherty DV, Lee S, Vroegop J, Wu J, Shen J, Landis GN, Yen CA, Wang I, Curran SP
[
J Gerontol A Biol Sci Med Sci,
2020]
Mating and transfer of male Sex Peptide (SP), or transgenic expression of SP, causes inflammation and decreased life span in female Drosophila. Mifepristone rescues these effects, yielding dramatic increases in life span. Here targeted metabolomics data were integrated with further analysis of extant transcriptomic data. Each of seven genes positively correlated with life span were expressed in the brain or eye, and involved regulation of gene expression and signaling. Genes negatively correlated with life span were preferentially expressed in midgut and involved protein degradation, amino acid metabolism, and immune response. Across all conditions, life span was positively correlated with muscle breakdown product 1/3-methylhistadine and purine breakdown product urate, and negatively correlated with tryptophan breakdown product kynurenic acid, suggesting a SP-induced shift from somatic maintenance/turnover pathways to the costly production of energy and lipids from dietary amino acids. Some limited overlap was observed between genes regulated by mifepristone and genes known to be regulated by ecdysone, however, mifepristone was unable to compete with ecdysone for activation of an ecdysone-responsive transgenic reporter. In contrast, genes regulated by mifepristone were highly enriched for genes regulated by Juvenile Hormone (JH), and mifepristone rescued the negative effect of JH analog methoprene on life span in adult virgin females. The data indicate that mifepristone increases life span and decreases inflammation in mated females by antagonizing JH signaling downstream of male SP. Finally, mifepristone increased life span of mated, but not unmated, C. elegans, in two of three trials, suggesting possible evolutionary conservation of mifepristone mechanisms.
-
[
Worm Breeder's Gazette,
1987]
We have accomplished a ten year long project aimed to learn whether competition between the juvenile hormone (JH) analogue methoprene (JHA) and precocenes (P's) (chromene derivatives capable to destruct the JH producing organ (CA) in sensitive insect species tissue specifically) in C. elegans (Fodor, et. al., Gen. Comp. Endcr. 46: p. 99 (1982)) can or cannot be explained by a comparable 'anti-JH' action of P's in nematodes. Neither JH or CA like organ has been discovered in nematodes so far. There are only a few indirect data showing that insect juvenile hormones may influence certain nematodes pathogenizing insects. We adopted a 'structure/activity' approach including design, synthesis and test P analogues on nematodes in the presence and absence of JHA. If (at least part of) those analogues which capable to destruct the CA of a sensitive insect (Locusta migratoria) were also effective in nematodes and their effect could be compensated by JHA exogenously, then this hormone (analogue) should play a physiological role in the P-poisoned nematodes. If those P's could be competed by JHA, which proved effective (as 'anti-JH' compounds) in insects, but those which exerted only aspecific toxicity could not be, then it would be logical to suggest, that P's are the same kind of 'suicide compounds' for nematodes as for insects. More than 200 P derivatives were synthesized (Tim r, Hosztafi) and tested on C. elegans (Fodor) and L. migratoria (Kiss). After a detailed quantitative structure/activity relation (QSAR) analysis ( Dinya, et. al., QSAR Strat. Des. Bioact. Compd. Proc. Eur. Symp. Struct.-Act. Relat. 5th (1984) Publ. 1985) several new P analogue were designed, synthesized and tested on L. migratoria and on C. remanei var. Bangaloriensis. (We choose this nematode strain because half of its population consists of males, therefore it is easy to distinguish male adultoids from other type of retarded worms.) Altogether, 121 molecules were retested C. remanei and 17 of them was found to exert some significant biological effect. These compounds were retested again several times both in the absence and in the presence of 1 mg/ml NGM dose of JHA: altogether, more that 144,000 C. remanei embryos were counted, treated and scored afterwards. The tests on nematodes were carried out as described in our attached paper. The most characteristic data concerning precocene activity in nematodes were the following: (1) LC50: the half lethal dose (in g/ml) at which half of the embryos develops to worms (calculated by probit analysis); (2) AD50: the dose ( g/ml) at which half of the embryos develops to normal adults; (3) EC50: the dose ( g/ml) at which half of the nematodes on the plates found as 'normal' fertile adults; (4) The maximum frequency of 'adultoid mini worms' during the experiments. [See Figures 1- 2] The main conclusions are the following: About structure/activity relations: (1) All the three (P1-P3) precocene is effective in nematodes and their effects can be compensated by exogenous JHA. (2) The longer the chain of the R7 substituent the less the effect of the compounds in nematodes. (3) The 7-proparglyoxy analogues are much more effective in nematodes than any other C7 substituted compound. (compare P1 to TT51; P2 to K460; P3 to TT80; TT56 to TT58 or 3,4-diCl-P1 (inactive) to FI121.) (4) The asymmetrically disubstituted analogues are much more effective than the symmetrically disubstituted ones (compare TT80 to K460). It is true, if R7 is longer than R6. (5) Me substitution at C5 position inactivates the originally potent P's (compare TT58 to TT51) but restore the activity of originally inactive (for instance, 7-sBuO-P1) analogues (compare it to TT56). 8-MeO substitution eliminate specific P activity (compare TT51 to K464). (6) Both 8-Me and 8-MeO substitution increase toxic rather than JH compatible biological activity of P's. 8-MeO analogues are more toxic than 8-Me ones, but the consequences of the action of 8-MeO compounds in nematodes can be cured more efficiently by JHA than those concerning 8-Me compounds (compare TT100 to K475). About JHA competition experiments: JHA competed the effects of all precocenes which effected both insects and nematodes. However, the data concerning K354 and FI121 show, that there are analogues which effective only in nematodes and their effects can also be cured by exogenous JHA. Although there are aspecifically toxic analogues (like K454 or 2,3,5-triMe-7 propargO-P1) which cannot be compensated by methoprene, we cannot conclude, that our data unambiguously support the idea of existence JH-like hormones in nematodes. It seems very probable, however, that JH-like compounds can interfere with the lethal metabolism of P's.
-
[
Exp Eye Res,
1995]
Sclerosing keratitis is the predominant cause of blindness due to onchocerciasis which is a major human parasitic disease caused by the filarial parasite Onchocerca volvulus. In the present investigation, native pathogenic antigens of O. volvulus which are particularly potent in causing interstitial keratitis were characterized utilizing a guinea pig model. Following demonstration of the protein nature of these antigens using pronase digestion, the crude O. volvulus antigen extract was subjected to stepwise procedures of protein purification. At each stage of purification, pooled antigen fractions were injected into one cornea of presensitized guinea pigs followed by clinical evaluation of stromal inflammation and vascularization at different intervals of time after intrastromal challenge. Initial purification of the pathogenic antigens was carried out in the following order: molecular sieve chromatography on Bio-gel A-5m. anion exchange chromatography on Mono Q followed by DEAE-Sepharose CL-6B and cation exchange chromatography on Mono S. Two out of six different pools from the Mono S column (pool a eluted unbound at 10 mM-NaCl and pool e eluted between 130 mM and 475 mM-NaCl) were found to be most pathogenic. Further purification of Mono S pool a and pool e separately by gel filtration chromatography using Superose 12 demonstrated that the fractions which were most potent in inducing interstitial keratitis contained proteins with approximate molecular masses between 100 and 200 kDa. These results show that minor subfractions of total crude antigens of O. volvulus are largely responsible for induction of experimental interstitial keratitis. We have demonstrated the presence of these antigens in O. volvulus microfilariae by their cross-reactivities with anti-microfilarial antibodies, and hence the relevance of the purified antigens to ocular onchocerciasis in man since sclerosing keratitis is associated with invasion of the cornea by O. volvulus microfilariae. Isolation of these two pathogenic antigen pools represents the practical limits of purification and subsequent animal experiments possible with the available amounts of native parasite material obtained from infected human individuals in the absence of a suitable non-human host or of an in vitro culture system for O. volvulus.
-
[
Invest Ophthalmol Vis Sci,
2000]
PURPOSE: A murine model of helminth-induced keratitis (river blindness) that is characterized by a biphasic recruitment of neutrophils (days 1-3) and eosinophils (days 3+) to the cornea has been developed. The purpose of this study was to determine the relative contribution of P- and E-selectin in recruitment of these inflammatory cells from limbal vessels to the corneal stroma. METHODS: P- and E-selectin gene knockout (-/-) mice were immunized with antigens extracted from the parasitic helminth Onchocerca volvulus. One week after the last immunization, parasite antigens were injected directly into the corneal stroma. Mice were killed on days 1 and 3 postchallenge, and eyes were immunostained with either anti-eosinophil major basic protein (MBP) or with anti-neutrophil Ab. The number of cells in the cornea was determined by direct counting. RESULTS: Recruitment of eosinophils to the cornea was significantly impaired in P-selectin(-/-) mice (63.9% fewer eosinophils on day 1 [P: = 0.0015], and 61% fewer on day 3 [P: < 0.0001]) compared with control C57BL/6 mice. In contrast, P-selectin deficiency had no effect on neutrophil recruitment to the cornea. There was no inhibition of eosinophil and neutrophil migration to the corneas of E-selectin(-/-) mice, indicating that there is no direct role for this adhesion molecule in helminth-induced keratitis. CONCLUSIONS: The present study demonstrates that P-selectin is an important mediator of eosinophil recruitment to the cornea. P-selectin interactions may therefore be potential targets for immunotherapy in eosinophil-mediated ocular inflammation.
-
[
Gen Comp Endocrinol,
1989]
Precocenes (PI and PII) and 114 of their analogs (PAs) were synthetized and tested on C. remanei embryos for their precocene-like (P-like) activities resulting in unusual development at sublethal doses. The P-like activity was quantitated by plotting the probit of the percentage of the developmentally affected survivors against the (log) dose to obtain the EC plot and the half effective concentration (EC50). All five PAs (PI, PII, 7-ethoxy-PII, 7-(
prop-2-ynyloxy)-PI, and 6-methoxy-7-(
prop-2-ynyloxy)-PII) which exert both antiallatal activity in insects and P-like activity in nematodes are 7-alkoxy-substituted 2,2-dimethylchromenes. Both activities can be enhanced by an additional 6-MeO-substitution or by an asymmetric 6,7-dialkoxy-substitution, on condition that R-7 is longer than R-6. There are many more similarities than dissimilarities in the structural requirements needed for antiallatal and P-like activities. All but three nonantiallatal PAs effective in nematodes are 7-
prop-2-ynyloxy-substituted; two are symmetrically 6,7-disubstituted, and one is heterosubstituted (thio-PI). All PAs with antiallatal but without P-like activity are 7-monosubstituted with a relatively long alkoxy group. Certain substitutions favor antiallatal activity and others P-like activity. The severe nematocidal effect of 6,7-methylenedioxy-2,2-dimethylchromene (inert in insects) is not accompanied by P-like activity. The present findings lend some indirect support to the supposition that JH-producing cells and/or JH-dependent function(s) might
-
[
Invest Ophthalmol Vis Sci,
1998]
PURPOSE: Intrastromal injection of mice with antigens from the parasitic helminth that causes river blindness (Onchocerca volvulus) induces eosinophil recruitment to the corneal stroma at the time of maximum corneal opacification and neovascularization. The present study was conducted to examine the role of eosinophils and neutrophils in onchocercal keratitis in control C57Bl/6 mice and in interleukin-5 gene knockout (IL-5(-/-)) mice. METHODS: C57Bl/6 and IL-5(-/-) mice were immunized subcutaneously and injected intrastromally with soluble O. volvulus antigens. Mice were killed at various times thereafter. Development of keratitis was assessed by slit lamp examination, and inflammatory cells in the cornea were identified by immunohistochemistry. RESULTS: A biphasic recruitment of inflammatory cells was observed in C57Bl/6 mice; neutrophils predominated during the first 72 hours after intrastromal injection and subsequently declined, whereas eosinophil recruitment increased as time elapsed and comprised the majority (90%) of cells in the cornea by day 7. In contrast, neutrophils were the predominant inflammatory cells in IL-5(-/-) mice at early and late time points and were associated with extensive stromal damage and corneal opacification and neovascularization. Eosinophils were not detected in these mice at any time. CONCLUSIONS: In the absence of eosinophils, neutrophils can mediate keratitis induced by helminth antigens. Together with the early neutrophilic infiltrate in control animals, these observations indicate that neutrophils have an important role in onchocercal keratitis.