-
[
Curr Biol,
2005]
Aurora B kinases play important roles during mitosis in eukaryotic cells; new work in Caenorhabditis elegans has identified the Tousled kinase TLK-1 as a substrate activator of the model nematode''''s Aurora B kinase AIR-2 which acts to ensure proper chromosome segregation during
-
[
Trends Cell Biol,
2010]
A wealth of evidence underscores the tight link between oxidative stress, neurodegeneration and aging. When the level of excess reactive oxygen species (ROS) increases in the cell, a phenomenon characteristic of aging, DNA is damaged, proteins are oxidized, lipids are degraded and more ROS are produced, all culminating in significant cell injury. Recently we showed that in the nematode, Caenorhabditis elegans, oxidation of K(+) channels by ROS is a major mechanism underlying the loss of neuronal function. The C. elegans results support an argument that K(+) channels controlling neuronal excitability and survival might provide a common, functionally important substrate for ROS in aging mammals. Here we discuss the implications that oxidation of K(+) channels by ROS might have for the mammalian brain during normal aging, as well as in neurodegenerative diseases such as Alzheimer's and Parkinson's. We argue that oxidation of K(+) channels by ROS is a common theme in the aging brain and suggest directions for future experimentation.
-
[
Physiology (Bethesda),
2009]
Recent work shows that transport-independent as well as transport-dependent functions of ion transporters, and in particular the Na-K-ATPase, are required for formation and maintenance of several intercellular junctions. Furthermore, these junctional and other nonjunctional functions of ion transporters contribute to development of epithelial tubes. Here, we consider what has been learned about the roles of ion pumps in formation of junctions and epithelial tubes in mammals, zebrafish, Drosophila, and C. elegans. We propose that asymmetric association of the Na-K-ATPase with cell junctions early in metazoan evolution enabled vectorial transcellular ion transport and control of intraorganismal environment. Ion transport-independent functions of the Na-K-ATPase arose as junctional complexes evolved.
-
[
Trends in Pharmacological Sciences,
2005]
K+ channels that possess two pore domains in each channel subunit are common in many animal tissues. Such channels are generated from large families of subunits and are implicated in several functions, including temperature sensation, responses to ischaemia, K+ homeostasis and setting the resting potential of the cell. Their activity can be modulated by polyunsaturated fatty acids, pH and oxygen, and some are candidate targets of volatile anaesthetics. However, despite their potential as targets for novel drugs for human health, comparatively little is known about the molecular basis of their diverse physiological and pharmacological properties. Genetic model organisms have considerable potential for improving our understanding of these channels. In this article, we review the contributions of some of these genetic model organisms to recent advances in our knowledge of two-pore-domain K+
-
[
Genetics,
2019]
The <b>T</b>arget <b>o</b>f <b>R</b>apamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and <i>in vivo</i> studies, <i>Caenorhabditis elegans</i> has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, <i>C. elegans</i> has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in <i>C. elegans</i>, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for <i>C. elegans</i> biology, and how <i>C. elegans</i> work has developed paradigms of great importance for the broader TOR field.
-
[
Nature Cell Biology,
1999]
Studies on the role of cholesterol- and caveolin-rich membrane microdomains in localizing Ras to the plasma membrane and enabling its signalling activity reveal intriguing differences both between mammalian H-Ras and K-Ras and between requirements for Ras signalling in mammalian and nematode cells.
-
[
Trends in Cell Biology,
1996]
Cellular microtubules assemble and disassemble at a variety of rates and frequencies, and these properties contribute directly to the cell-cycle-associated rearrangements of the microtubule cytoskeleton and to the molecular basis of mitosis. The kinetics of assembly/disassembly are governed, in part, by the hydrolysis of GTP bound to the B-tubulin nucleotide-binding site. The B-tubulin GTP-binding site, therefore, lies at the heart of microtubule assembly-disassembly kinetics, and the elucidation of its structure is central to an understanding of the cellular behaviour of microtubules. Unfortunately, the crystallographic structure of B-tubulin is not yet available. In this review, we describe the progress being made using mutagenesis and biochemical studies to understand the structure of this unusual GTP-binding site.
-
[
Microbiol Mol Biol Rev,
2021]
SUMMARYExtensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on <i>Bacillus thuringiensis</i> This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of <i>B. thuringiensis</i>-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to <i>B. thuringiensis</i> Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of <i>B. thuringiensis</i>-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and <i>Caenorhabditis elegans</i>) respond to exposure to <i>B. thuringiensis</i> as either whole bacteria, spores, and/or its pesticidal proteins.
-
[
1986]
Wild-type body wall muscle cells of Caenorhabditis elegans produce at a constant ratio two myosin heavy chain isoforms, A and B, that form homodimeric myosins. Electron microscopy of negatively stained complexes of isoform-specific antibodies with isolated thick filaments shows that the surface of the 9.7 =B5m long filament is differentiated with respect to myosin content: a medial 1.8 =B5m zone contains myosin A and two polar 4.4 = =B5m zones contain myosin B. Biochemical and electron microscopic studies show that at 0.45 M KC1, pH 6.35, myosin B and paramyosin are solubilized. The medial all-myosin A region with novel core structures extending in a polar manner remain. These dissociation experiments suggest a sequential model for wild-type thick filament assembly in which myosins A and B would participate in the initiation and termination of assembly, respectively. Analysis of mutant thick filaments clarifies the relationship of the myosin isoforms. CB190 (
unc-54 I) thick filaments contain myosin A only and have normal length. CB1214 (
unc-15 I) mutants produce no paramyosin, and their thick filaments are composed of a medial myosin region
-
[
Biochim Biophys Acta,
2010]
Precise regulation of the intracellular concentration of chloride [Cl-]i is necessary for proper cell volume regulation, transepithelial transport, and GABA neurotransmission. The Na-K-2Cl (NKCCs) and K-Cl (KCCs) cotransporters, related SLC12A transporters mediating cellular chloride influx and efflux, respectively, are key determinants of [Cl-]i in numerous cell types, including red blood cells, epithelial cells, and neurons. A common "chloride/volume-sensitive kinase", or related system of kinases, has long been hypothesized to mediate the reciprocal but coordinated phosphoregulation of the NKCCs and the KCCs, but the identity of these kinase(s) has remained unknown. Recent evidence suggests that the WNK (with no lysine = K) serine-threonine kinases directly or indirectly via the downstream Ste20-type kinases SPAK/OSR1, are critical components of this signaling pathway. Hypertonic stress (cell shrinkage), and possibly decreased [Cl-]i, triggers the phosphorylation and activation of specific WNKs, promoting NKCC activation and KCC inhibition via net transporter phosphorylation. Silencing WNK kinase activity can promote NKCC inhibition and KCC activation via net transporter dephosphorylation, revealing a dynamic ability of the WNKs to modulate [Cl-]. This pathway is essential for the defense of cell volume during osmotic perturbation, coordination of epithelial transport, and gating of sensory information in the peripheral system. Commiserate with their importance in serving these critical roles in humans, mutations in WNKs underlie two different Mendelian diseases, pseudohypoaldosteronism type II (an inherited form of salt-sensitive hypertension), and hereditary sensory and autonomic neuropathy type 2. WNKs also regulate ion transport in lower multicellular organisms, including Caenorhabditis elegans, suggesting that their functions are evolutionarily-conserved. An increased understanding of how the WNKs regulate the Na-K-2Cl and K-Cl cotransporters may provide novel opportunities for the selective modulation of these transporters, with ramifications for common human diseases like hypertension, sickle cell disease, neuropathic pain, and epilepsy.