-
[
1987]
Work in our laboratory over the past several years has focused on the nature of early determinative decisions in embryos of the free-living nematode Caenorhabditis elegans. Two of these decisions regard determination of sex and determination of the level of X-chromosome expression. C. elegans has two sexes, self-fertilizing hermaphrodites and males. Hermaphrodites normally have two X chromosomes, and males have only one (there is no Y chromosome). Genetic and molecular evidence suggest that C. elegans compensates for this difference in X dosage, not by X inactivation as in mammals, but rather by global regulation of the X chromosome as in Drosophila; that is, X-linked genes are expressed at a higher level per chromosome in 1X than 2X animals, so that levels of X expression are similar in the two sexes. Also as in Drosophila, the primary signal that dictates both sex determination and level of X expression in C. elegans is the ration of the number of X chromosomes to the number of sets of autosomes (X/A ratio) rather than the absolute number of X chromosomes.|
-
[
WormBook,
2005]
In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the global, epigenetic regulation of X chromosomes that is maintained throughout the lifetime of hermaphrodites.
-
[
WormBook,
2006]
The DNA in eukaryotes is wrapped around a histone octamer core, together comprising the main subunit of chromatin, the nucleosome. Modifications of the nucleosomal histones in the genome correlate with the ability or inability of chromatin to form higher order structures, that in turn influence gene activity. The genome in primordial germ cells in early C. elegans germ cells carries a unique pattern of histone modifications that correlate with transcriptional repression in these cells, and aspects of this chromatin regulation are conserved in Drosophila. Loss of repression causes sterility in the adults, suggesting that chromatin-based repression is essential for germ line maintenance. The post-embryonic germ line also exhibits unique and dynamic aspects of chromatin regulation, with chromosome-wide regulation particularly evident on the X chromosome. Several properties of X-specific chromatin assembly are also sex-specific. These properties appear to be responding to the meiotic pairing status of the X chromosome, rather than the sex of the germ cells. Finally, gamete-specific chromatin regulation during gametogenesis impacts on X chromatin assembly in the offspring, leading to an apparent sperm-imprinted X inactivation in the early embryo. Other potential roles for germline-specific modes of chromatin assembly in genome regulation and protection are discussed.
-
In the next five years, molecular biology will get its first look at the complete genetic code of a multicellular animal. The Caenorhabditis elegans genome sequencing project, a collaboration between Robert Waterston's group in St. Louis and John Sulston's group in Cambridge, is currently on schedule towards its goal of obtaining the complete sequence of this organism and all its estimated 15,000 to 20,000 genes by 1998. By that time, we should also know the complete genome sequence of a few other organisms as well, including the prokaryote Escherichia coli and the single-celled eukaryote Saccharomyces
-
[
WormBook,
2005]
The normal karyotype of Caenorhabditis elegans, with its five pairs of autosomes and single pair of X chromosomes, is described. General features of chromosomes and global differences between different chromosomal regions are discussed. Abnormal karyotypes, including duplications, deficiencies, inversions, translocations and chromosome fusions are reviewed. The effects of varying ploidy and of varying gene dosage are summarized. Dosage-sensitive genes seem to be rare in C. elegans, and the organism is able to tolerate substantial levels of aneuploidy. However, autosomal hemizygosity for more than about 3 % of the total genome may be incompatible with viability.
-
[
WormBook,
2006]
Throughout the C. elegans sequencing project Genefinder was the primary protein-coding gene prediction program. These initial predictions were manually reviewed by curators as part of a "first-pass annotation" and are actively curated by WormBase staff using a variety of data and information. In the WormBase data release WS133 there are 22,227 protein-coding gene, including 2,575 alternatively-spliced forms. Twenty-eight percent of these have every base of every exon confirmed by transcription evidence while an additional 51% have some bases confirmed. Most of the genes are relatively small covering a genomic region of about 3 kb. The average gene contains 6.4 coding exons accounting for about 26% of the genome. Most exons are small and separated by small introns. The median size of exons is 123 bases, while the most common size for introns is 47 bases. Protein-coding genes are denser on the autosomes than on chromosome X, and denser in the central region of the autosomes than on the arms. There are only 561 annotated pseudogenes but estimates but several estimates put this much higher.
-
[
1982]
Caenorhabditis elegans is a free-living, nonparasitic nematode. It is a self-fertilizing hermaphrodite. Males arise spontaneously by nondisjunction of X-chromosomes. Of all eukaryotic organisms C. elegans has probably been most extensively studied at the cellular level. Within 12 hours the fertilized egg develops into a young larva with 558 nuclei (560 in the male). During postembryonic development the animal proceeds through four larval stages increasing its number of nuclei to 959 (1,031 in the male) plus some 2,000 germ cells (about 1,000 in the male). The cell lineages from fertilization to adulthood have been completely analyzed in living embryos and animals. This and its well-established genetics (more than 300 genes have been mapped on the six linkage groups) make it a suitable model organism to study problems of gene action and development. Various techniques have been used to interfere with normal development (including laser-induced cell ablations) and to analyze development on the subcellular level (including recombinant DNA technology). The characteristic features of rigidly determined development, the low cell number, and the knowledge of cellular events should make it possible to identify molecular action in situ and relate it to the structure and
-
[
WormBook,
2006]
C. elegans occurs in two natural sexes, the XX hermaphrodite and the XO male, which differ extensively in anatomy, physiology, and behavior. All somatic differences between the sexes result from the differential activity of a global sex determination regulatory pathway. This pathway also controls X chromosome dosage compensation, which is coordinated with sex determination by the action of the three SDC proteins. The SDC proteins control somatic and germline sex by transcriptional repression of the
her-1 gene. HER-1 is a secreted protein that controls a regulatory module consisting of a transmembrane receptor, TRA-2 , three intracellular FEM proteins, and the zinc finger transcription factor TRA-1 . The molecular workings of this regulatory module are still being elucidated. Similarity of TRA-2 to patched receptors and of TRA-1 to GLI proteins suggests that parts of the global pathway originally derived from a Hedgehog signaling pathway. TRA-1 controls all aspects of somatic sexual differentiation, presumably by regulating a variety of tissue- and cell-specific downstream targets, including the cell death regulator EGL-1 and the male sexual regulator MAB-3 . Sex determination evolves rapidly, and conservation of sexual regulators between phyla has been elusive. An apparent exception involves DM domain proteins, including MAB-3 , which control sexual differentiation in nematodes, arthropods, and vertebrates. Important issues needing more study include the detailed molecular mechanisms of the global pathway, the identities of additional sexual regulators acting in the global pathway and downstream of TRA-1 , and the evolutionary history of the sex determination pathway. Recently developed genetic and genomic technologies and comparative studies in divergent species have begun to address these issues.
-
[
1987]
Vitellogenins of many insects, vertebrates, nematodes and sea urchins are very similar in size and amino acid composition. We have determined the nucleotide sequences of the genes that encode vitellogenins in nematodes (C. elegans) and sea urchins (S. purpuratus), and compared the deduced amino acid sequences to the published sequences of two vertebrate vitellogenins (X. laevis and G. gallus). This comparison demonstrated unequivocally that the nematode and vertebrate proteins are encoded by distant members of a single gene family. The less extensive sequence data available for the sea urchin gene indicates that this, too, may be a member of this family of genes, as may the vitellogenin genes of locust. On the other hand, we were unable to detect any similarity between these genes and the D. melanogaster yolk protein genes. Thus it appears that while nematodes, vertebrates, sea urchins and at least some insects utilize the same family of genes to encode vitellogenins, Drosophila uses a different gene family. All of the vitellogenin genes are regulated in a tissue-specific manner. They are expressed in the intestine in nematodes, in the liver in vertebrates, in the fat body in insects, and in the intestine and gonad in sea urchins. Their production is limited to adult females in all species except sea urchins, in which they are expressed by adults of both sexes. In nematodes we have identified two heptameric sequence elements repeated multiple times in all eleven of the vitellogenin genes sequenced. One of these elements is also present in the vertebrate promoters and has recently been shown to be required for transcriptional activation. All of the 5' ends of the vitellogenin mRNAs of nematodes, vertebrates and locust can be folded into potentially-stable secondary structures. We present evidence that these structures have been strongly selected for and presumably perform some function in regulation of vitellogenin production.
-
[
1989]
Transposable elements have recently been described in several species: Caenorhabditis elegans, Caenorhabditis briggsae, Ascaris lumbricoides, and Panagrellus redivivus. Because of the intense interest in C. elegans as an experimental organism for developmental genetic studies and the availability of sophisticated genetics, most is know about transposons in this species. This review focuses principally on Tc1 (Tc=transposon) of C. elegans, the best understood element in nematodes. Other elements in C. elegans and also elements in other species of nematodes will be briefly surveyed. The interested reader should also see two recent related reviews. The genome of C. elegans is 8 x 10(7) base pairs (bp) in extent, the smallest known for any metazoan. There are six chromosomes per haploid set, and about 83% of C. elegans DNA behaves as single-copy sequence in renaturation experiments. The repeated sequences are of several types, including functional genes, inverted or "foldback" sequences, and short repeated sequences of a few hundred nucleotides. The global arrangment of these short repeats is of the "short-period-interspersion" or "Xenopus" pattern. Some of the repetitive sequences consist of transposable elements, and at least five distinct families have been identified in C. elegans, Tc1 through Tc5. The sequence of one Tc1 element has been determined and shows that Tc1 resembles bacterial insertion sequence elements with terminal inverted repeats and a central open reading frame. The complete sequences for any members of the other transposon families have not been determined, but the data suggest that Tc2, Tc3, and Tc5 are also insertion sequence-like in structure and that Tc4 is foldbacklike in structure. No "retrotransposon-like" elements have been identified in C. elegans, although such elements have been described in A.