In Caenorhabditis elegans, rhythmic posterior body wall muscle contractions mediate the highly regular defecation cycle. These contractions are regulated by inositol-1,4,5-trisphosphate (InsP3) receptor-dependent Ca2+ oscillations in intestinal epithelial cells. Here, we find that mutations in
dec-7, which encodes the nematode ortholog of the human Sushi domain containing 2 protein (SUSD2), lead to an increase in InsP3 receptor-dependent rhythmic posterior body wall muscle contractions. DEC-7 is highly expressed in the intestinal epithelia and localizes to the cell-cell junction. The increase in rhythmic activity caused by loss of
dec-7 is dependent on the innexin gap junction protein INX-16. Moreover, DEC-7 is required for the clustering of INX-16 to the cell-cell junction of the intestinal epithelia. We hypothesize that DEC-7/SUSD2 regulates INX-16 activity to mediate the rhythmic frequency of the defecation motor program. Thus, our data indicate a critical role of a phylogenetically conserved cell-cell junction protein in mediating an ultradian rhythm in the intestinal epithelia of C. elegans.