[
Prog Mol Biol Transl Sci,
2014]
Mechanobiology is an emerging field that investigates how living cells sense and respond to their physical surroundings. Recent interest in the field has been sparked by the finding that stem cells differentiate along different lineages based on the stiffness of the cell surroundings (Engler et al., 2006), and that metastatic behavior of cancer cells is strongly influenced by the mechanical properties of the surrounding tissue (Kumar and Weaver, 2009). Many questions remain about how cells convert mechanical information, such as viscosity, stiffness of the substrate, or stretch state of the cells, into the biochemical signals that control tissue function. Caenorhabditis elegans researchers are making significant contributions to the understanding of mechanotransduction in vivo. This review summarizes recent insights into the role of mechanical forces in morphogenesis and tissue function. Examples of mechanical regulation across length scales, from the single-celled zygote, to the intercellular coordination that enables cohesive tissue function, to the mechanical influences between tissues, are considered. The power of the C. elegans system as a gene discovery and in vivo quantitative bioimaging platform is enabling an important discoveries in this exciting field.
[
Metabolites,
2021]
Prostaglandins comprise a family of lipid signaling molecules derived from polyunsaturated fatty acids and are involved in a wide array of biological processes, including fertilization. Prostaglandin-endoperoxide synthase (a.k.a. cyclooxygenase or Cox) initiates prostaglandin synthesis from 20-carbon polyunsaturated fatty acids, such as arachidonic acid. Oocytes of Caenorhabditis elegans (C. elegans) have been shown to secrete sperm-guidance cues prostaglandins, independent of Cox enzymes. Both prostaglandin synthesis and signal transduction in C. elegans are environmentally modulated pathways that regulate sperm guidance to the fertilization site. Environmental factors such as food triggers insulin and TGF-B secretion and their levels regulate tissue-specific prostaglandin synthesis in C. elegans. This novel PG pathway is abundant in mouse and human ovarian follicular fluid, where their functions, mechanism of synthesis and pathways remain to be established. Given the importance of prostaglandins in reproductive processes, a better understanding of how diets and other environmental factors influence their synthesis and function may lead to new strategies towards improving fertility in mammals.