-
[
Worm,
2012]
The sequencing of the complete genome of the nematode Caenorhabditis elegans was a landmark achievement and ushered in a new era of whole-organism, systems analyses of the biology of this powerful model organism. The success of the C. elegans genome sequencing project also inspired communities working on other organisms to approach genome sequencing of their species. The phylum Nematoda is rich and diverse and of interest to a wide range of research fields from basic biology through ecology and parasitic disease. For all these communities, it is now clear that access to genome scale data will be key to advancing understanding, and in the case of parasites, developing new ways to control or cure diseases. The advent of second-generation sequencing technologies, improvements in computing algorithms and infrastructure and growth in bioinformatics and genomics literacy is making the addition of genome sequencing to the research goals of any nematode research program a less daunting prospect. To inspire, promote and coordinate genomic sequencing across the diversity of the phylum, we have launched a community wiki and the 959 Nematode Genomes initiative (www.nematodegenomes.org/). Just as the deciphering of the developmental lineage of the 959 cells of the adult hermaphrodite C. elegans was the gateway to broad advances in biomedical science, we hope that a nematode phylogeny with (at least) 959 sequenced species will underpin further advances in understanding the origins of parasitism, the dynamics of genomic change and the adaptations that have made Nematoda one of the most successful animal phyla.
-
[
Cell Mol Life Sci,
2020]
Host-microbe interactions within the gut are fundamental to all higher organisms. Caenorhabditis elegans has been in use as a surrogate model to understand the conserved mechanisms in host-microbe interactions. Morphological and functional similarities of C. elegans gut with the human have allowed the mechanistic investigation of gut microbes and their effects on metabolism, development, reproduction, behavior, pathogenesis, immune responses and lifespan. Recent reports suggest their suitability for functional investigations of human gut bacteria, such as gut microbiota of healthy and diseased individuals. Our knowledge on the gut microbial diversity of C. elegans in their natural environment and the effect of host genetics on their core gut microbiota is important. Caenorhabditis elegans, as a model, is continuously bridging the gap in our understanding the role of genetics, environment, and dietary factors on physiology of the host.
-
[
Biophys Rev,
2021]
Somatic maintenance and cell survival rely on proper protein homeostasis to ensure reliable functions across the cell and to prevent proteome collapse. Maintaining protein folding and solubility is central to proteostasis and is coordinated by protein synthesis, chaperoning, and degradation capacities. An emerging aspect that influences proteostasis is the dynamic protein partitioning across different subcellular structures and compartments. Here, we review recent literature related to nucleocytoplasmic partitioning of proteins, nuclear and cytoplasmic quality control mechanisms, and their impact on the development of age-related diseases. We also highlight new points of entry to modulate spatially-regulated proteostatic mechanisms to delay aging.
-
[
Prog Mol Biol Transl Sci,
2014]
Mechanobiology is an emerging field that investigates how living cells sense and respond to their physical surroundings. Recent interest in the field has been sparked by the finding that stem cells differentiate along different lineages based on the stiffness of the cell surroundings (Engler et al., 2006), and that metastatic behavior of cancer cells is strongly influenced by the mechanical properties of the surrounding tissue (Kumar and Weaver, 2009). Many questions remain about how cells convert mechanical information, such as viscosity, stiffness of the substrate, or stretch state of the cells, into the biochemical signals that control tissue function. Caenorhabditis elegans researchers are making significant contributions to the understanding of mechanotransduction in vivo. This review summarizes recent insights into the role of mechanical forces in morphogenesis and tissue function. Examples of mechanical regulation across length scales, from the single-celled zygote, to the intercellular coordination that enables cohesive tissue function, to the mechanical influences between tissues, are considered. The power of the C. elegans system as a gene discovery and in vivo quantitative bioimaging platform is enabling an important discoveries in this exciting field.
-
[
Epigenetics Chromatin,
2022]
Nucleosome assembly proteins (NAPs) are histone chaperones that play a central role in facilitating chromatin assembly/disassembly which is of fundamental importance for DNA replication, gene expression regulation, and progression through the cell cycle. In vitro, NAPs bind to the core histones H2A, H2B, H3, H4 and possibly to H1. The NAP family contains well-characterized and dedicated histone chaperone domain called the NAP domain, and the NAP-histone interactions are key to deciphering chromatin assembly. Our comparative structural analysis of the three three-dimensional structures of NAPs from S. cerevisiae, C. elegans, and A. thaliana in complex with the histone H2A-H2B dimer reveals distinct and diverse binding of NAPs with histones. The three NAPs employ distinct surfaces for recognizing the H2A-H2B dimer and vice versa. Though histones are highly conserved across species they display diverse footprints on NAPs. Our analysis indicates that understanding of NAPs and their interaction with histone H2A-H2B remains sparse. Due to divergent knowledge from the current structures analyzed here, investigations into the dynamic nature of NAP-histone interactions are warranted.
-
[
International Journal of Developmental Biology,
1998]
Pleiotropy , a situation in which a single gene influences multiple phenotypic tra its, can arise in a variety of ways. This paper discusses possible underlying mechanisms and proposes a classification of the various phenomena involved.
-
[
Curr Biol,
2003]
A novel protein in Caenorhabditis elegans, SAS-4, is a component of centrioles and is required for centriole duplication. Depletion of SAS-4 results in stunted centrioles and a smaller centrosome, suggesting a link to organelle size control.
-
[
Curr Biol,
1997]
An increasing body of evidence indicates that
p53, the product of a tumour suppressor gene, has a role in development - could this developmental role have provided the primary driving force in the evolution of a protein best known as a stress-response integrator?
-
[
Genome Biol,
2009]
Comparison of a regulatory network that specifies dopaminergic neurons in Caenorhabditis elegans to the development of vertebrate dopamine systems in the mouse reveals a possible partial conservation of such a network.
-
[
Nature,
1990]
What molecular signalling machines tell a precursor cell to develop into a specialized structure? In one case, described in three papers, including that by Aroian et al. on page 693 of this issue, these machines turn out to be a receptor tyrosine kinase and a ras protein.