-
[
Nature Cell Biology,
2003]
In both the nematode Caenorhabditis elegans and mammals, two proteins released from the mitochondrion - apoptosis inducing factor (AIF) and endonuclease G - cooperate in executing programmed cell death. Although both factors can kill cells in a caspase-independent fashion, new studies indicate that their translocation from mitochondria depends, in part, on caspase activation. Together, these data raise new questions about the functional hierarchy between caspases, AIF and mitochondrial membrane
-
[
Genes Dev,
2010]
A canonical regulatory pathway involving the members of the Bcl-2 and caspase families has been established to regulate developmental apoptosis in nematodes and flies. However, mutant mice that have major deficiencies in this apoptosis pathway show only relatively minor developmental defects. Recent revelations indicate that multiple mechanisms are involved in regulating cell death during mammalian development, tissue homeostasis, and pathological cell loss. Here, we critically evaluate the evidence demonstrating the existence of alternative cell death mechanisms, including apoptosis of lower organisms in the absence of canonical apoptosis mediators, autophagic cell death, necroptosis, elimination by shedding, keratinocyte death by cornification, and cell-cell cannibalism by entosis. The physiological relevance of alternative cell death mechanisms as primary and backup mechanisms is discussed.
-
[
Genes Dev,
1999]
A wide variety of extracellular stimuli induce signal transduction through receptors coupled to heterotrimeric G proteins, which consist of alpha, beta, and gamma subunits (Gilman 1987). The G alpha subunit has guanine nucleotide binding and GTP hydrolysis activities. Based on function and amino acid sequence homology, the Galpha, G alph i/o, G alpha q, and G alpha 12 (Simon et al. 1991; Hepler and Gilman 1992). As exemplified by the responsiveness of our five senses to environmental stimuli, signaling mediated by trimeric G proteins is often extremely rapid and transient. A key step in achieving such a raid response is the ability of the G alpha subunit to switch between it GDP- and GTP-bound forms. The nucleotide binding state of G alpha is regulated at both the GDP dissociation and GTP hydrolysis steps. Stimulation of receptors by agonists leads to a conformational change in the receptors which can function as a guanine nucleotide exchange factor to stimulate a rapid dissociation of GDP from the inactive G alpha. The nucleotide-free G alpha is then available to bind GTP, leading to the dissociation of G alpha from the G beta gamma heterodimer. Both the G alpha and G beat gamma subunits can interact with and regulate downstream effectors that include adenylyl cyclase, phospholipase C, and ion channels (Gilman 1987; Birnbaumer 1992).
-
[
WormBook,
2006]
Heterotrimeric G proteins, composed of alpha , beta , and gamma subunits, are able to transduce signals from membrane receptors to a wide variety of intracellular effectors. In this role, G proteins effectively function as dimers since the signal is communicated either by the G alpha subunit or the stable G betagamma complex. When inactive, G alpha -GDP associates with G betagamma and the cytoplasmic portion of the receptor. Ligand activation of the receptor stimulates an exchange of GTP for GDP resulting in the active signaling molecules G alpha -GTP and free G betagamma , either of which can interact with effectors. Hydrolysis of GTP restores G alpha -GDP, which then reassociates with G betagamma and receptor to terminate signaling. The rate of G protein activation can be enhanced by the guanine-nucleotide exchange factor, RIC-8 , while the rate of GTP hydrolysis can be enhanced by RGS proteins such as EGL-10 and EAT-16 . Evidence for a receptor-independent G-protein-signaling pathway has been demonstrated in C. elegans early embryogenesis. In this pathway, the G alpha subunits GOA-1 and GPA-16 are apparently activated by the non-transmembrane proteins GPR-1 , GPR-2 , and RIC-8 , and negatively regulated by RGS-7 . The C. elegans genome encodes 21 G alpha , 2 G beta and 2 G gamma subunits. The alpha subunits include one ortholog of each mammalian G alpha family: GSA-1 (Gs), GOA-1 (Gi/o), EGL-30 (Gq) and GPA-12 (G12). The remaining C. elegans alpha subunits ( GPA-1 , GPA-2 , GPA-3 , GPA-4 , GPA-5 , GPA-6 , GPA-7 , GPA-8 , GPA-9 , GPA-10 , GPA-11 , GPA-13 , GPA-14 , GPA-15 , GPA-16 , GPA-17 and ODR-3 ) are most similar to the Gi/o family, but do not share sufficient homology to allow classification. The conserved G alpha subunits, with the exception of GPA-12 , are expressed broadly while 14 of the new G alpha genes are expressed in subsets of chemosensory neurons. Consistent with their expression patterns, the conserved C. elegans alpha subunits, GSA-1 , GOA-1 and EGL-30 are involved in diverse and fundamental aspects of development and behavior. GOA-1 acts redundantly with GPA-16 in positioning of the mitotic spindle in early embryos. EGL-30 and GSA-1 are required for viability starting from the first larval stage. In addition to their roles in development and behaviors such as egg laying and locomotion, the EGL-30 , GSA-1 and GOA-1 pathways interact in a network to regulate acetylcholine release by the ventral cord motor neurons. EGL-30 provides the core signals for vesicle release, GOA-1 negatively regulates the EGL-30 pathway, and GSA-1 modulates this pathway, perhaps by providing positional cues. Constitutively activated GPA-12 affects pharyngeal pumping. The G alpha subunits unique to C. elegans are primarily involved in chemosensation. The G beta subunit, GPB-1 , as well as the G gamma subunit, GPC-2 , appear to function along with the alpha subunits in the classic G protein heterotrimer. The remaining G beta subunit, GPB-2 , is thought to regulate the function of certain RGS proteins, while the remaining G gamma subunit, GPC-1 , has a restricted role in chemosensation. The functional difference for most G protein pathways in C. elegans, therefore, resides in the alpha subunit. Many cells in C. elegans express multiple G alpha subunits, and multiple G protein pathways are known to function in specific cell types. For example, Go, Gq and Gs-mediated signaling occurs in the ventral cord motor neurons. Similarly, certain amphid neurons use multiple G protein pathways to both positively and negatively regulate chemosensation. C. elegans thus provides a powerful model for the study of interactions between and regulation of G protein signaling.
-
[
Prog Mol Biol Transl Sci,
2009]
The nematode worm, Caenorhabditis elegans, contains orthologs of most regulator of G protein signaling (RGS) protein subfamilies and all four G protein -subunit subfamilies found in mammals. Every C. elegans RGS and G gene has been knocked out, and the in vivo functions and G targets of a number of RGS proteins have been characterized in detail. This has revealed a complex relationship between the RGS and G proteins, in which multiple RGS proteins can regulate the same G protein, either by acting redundantly or by exerting control over signaling under different circumstances or in different cells. RGS proteins that are coexpressed can also show specificity for distinct G targets in vivo, and the determinants of such specificity can reside outside of the RGS domain. This review will discuss how analysis in C. elegans may aid us in achieving a full understanding of the physiological functions of RGS proteins.
-
[
Cell Death Differ,
2009]
Lethal mitochondrial membrane permeabilization has been depicted as the result of two fundamentally distinct processes, namely primary mitochondrial outer membrane permeabilization (MOMP) versus permeability transition (PT) ignited at the level of the mitochondrial inner membrane. MOMP and PT have been connected to apoptosis and necrosis, respectively. Moreover, it has been thought that MOMP was mediated by pro-apoptotic multidomain proteins of the Bcl-2 family (Bax and Bak), which would operate near-to-independently from the permeability transition pore complex (PTPC) composed by voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT) and cyclophilin D. A recent paper in Molecular and Cellular Biology now reveals the obligate contribution of one particular ANT isoform to the execution of developmental and homeostatic cell death in Caenorhabditis elegans. The physical and functional interaction between CED-9, the sole multidomain Bcl-2 protein of C. elegans, and ANT emphasizes the existence of an intricate, phylogenetically conserved crosstalk between Bcl-2 family proteins and constituents of the PTPC. In this issue of Cell Death and Differentiation, Malorni et al. further corroborate this notion by showing that type 2 transglutaminase (TG2) is essential for the correct assembly/function of ANT1, and that, at least in some experimental settings, TG2 might be required to enable and/or stabilize the pro-apoptotic association of Bax with ANT1.
-
[
Curr Biol,
1998]
In both vertebrates and invertebrates, olfactory perception is mediated by G-protein-coupled receptors. Recent work, in both mouse and Caenorhabditis elegans, sheds light on the role of specific G proteins in olfactory signal transduction, neuronal morphology and axon guidance.
-
[
Autophagy,
2010]
Spermidine is a ubiquitous polycation that is synthesized from putrescine and serves as a precursor of spermine. Putrescine, spermidine and spermine all are polyamines that participate in multiple known and unknown biological processes. Exogenous supply of spermidine prolongs the life span of several model organisms including yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans) and flies (Drosophila melanogaster) and significantly reduces age-related oxidative protein damage in mice, indicating that this agent may act as a universal anti-aging drug. Spermidine induces autophagy in cultured yeast and mammalian cells, as well as in nematodes and flies. Genetic inactivation of genes essential for autophagy abolishes the life span-prolonging effect of spermidine in yeast, nematodes and flies. These findings complement expanding evidence that autophagy mediates cytoprotection against a variety of noxious agents and can confer longevity when induced at the whole-organism level. We hypothesize that increased autophagic turnover of cytoplasmic organelles or long-lived proteins is involved in most if not all life span-prolonging therapies.
-
[
J Cell Biochem,
2012]
Signaling via heterotrimeric G-proteins is evoked by agonist-mediated stimulation of seven transmembrane spanning receptors (GPCRs). During the last decade it has become apparent that G subunits can be activated by receptor-independent mechanisms. Ric-8 belongs to a highly conserved protein family that regulates heterotrimeric G-protein function, acting as a non-canonical guanine nucleotide exchange factors (GEF) over a subset of G subunits. In this review we discuss the roles of Ric-8 in the regulation of diverse cell functions, emphasizing the contribution of its multiple domain protein structure in these diverse functions.
-
[
J Dev Biol,
2018]
Many vital processes during C. elegans development, especially the establishment and maintenance of cell polarity in embryogenesis, are controlled by complex signaling pathways. G protein-coupled receptors (GPCRs), such as the four Frizzled family Wnt receptors, are linchpins in regulating and orchestrating several of these mechanisms. However, despite being GPCRs, which usually couple to G proteins, these receptors do not seem to activate classical heterotrimeric G protein-mediated signaling cascades. The view on signaling during embryogenesis is further complicated by the fact that heterotrimeric G proteins do play essential roles in cell polarity during embryogenesis, but their activity is modulated in a predominantly GPCR-independent manner via G protein regulators such as GEFs GAPs and GDIs. Further, the triggered downstream effectors are not typical. Only very few GPCR-dependent and G protein-mediated signaling pathways have been unambiguously defined in this context. This unusual and highly intriguing concept of separating GPCR function and G-protein activity, which is not restricted to embryogenesis in <i>C. elegans</i> but can also be found in other organisms, allows for essential and multi-faceted ways of regulating cellular communication and response. Although its relevance cannot be debated, its impact is still poorly discussed, and <i>C.</i><i>elegans</i> is an ideal model to understand the underlying principles.