-
[
Worm,
2013]
Mechanical properties of the microenvironment are fundamental in orchestrating normal tissue function, disease progression, and organismal development. Studies of mechanotransduction in cultured cells on artificial substrates have revealed underlying principles, but the in vivo roles of mechanotransduction remain unclear. We recently reported that the Caenorhabditis elegans spermatheca-a myoepithelial tube composed of a cell monolayer-may be mechanosensitive. Live imaging with the genetically encoded calcium indicator GCaMP revealed that oocyte-induced stretching of the spermatheca resulted in calcium oscillations and constriction of the tube. FLN-1/filamin, a mechanosensitive cytoskeletal scaffolding protein, is required to correctly trigger the calcium transients. PLC-1/phospholipase C-epsilon and ITR-1/IP3 receptor are required to produce the calcium transients, and may function downstream of filamin. In addition to providing important insights into the biology of C. elegans, our studies offer a novel and genetically tractable model for studying mechanotransduction in a myoepithelial tissue.
-
[
PLoS Genet,
2013]
The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.
-
[
Dev Biol,
2010]
Filamin, known primarily for its actin cross-linking function, is a stretch-sensitive structural and signaling scaffold that binds transmembrane receptors and a wide variety of intracellular signaling proteins. The Caenorhabditis elegans filamin ortholog, FLN-1, has a well conserved overall structure, including an N-terminal actin-binding domain, and a series of 20 immunoglobulin (Ig)-like repeats. FLN-1 partially colocalizes with actin filaments in spermathecal and uterine cells. Analysis of phenotypes resulting from a deletion allele and RNAi depletion indicates FLN-1 is required to maintain the actin cytoskeleton in the spermatheca and uterus, and to allow the exit of embryos from the spermatheca. FLN-1 deficient animals accumulate embryos in the spermatheca, lay damaged and unfertilized eggs, and consequently exhibit dramatically reduced brood sizes. The phospholipase PLC-1 is also required for the exit of embryos from the spermatheca, and analysis of doubly mutant animals suggests that PLC-1 and FLN-1 act in the same pathway to promote proper transit of embryos from the spermatheca to the uterus. Given the modular protein structure, subcellular localization, genetic interaction with PLC-1, and known mechanosensory functions of filamin, we postulate that FLN-1 may be required to convert mechanical information about the presence of the oocyte into a biochemical signal, thereby allowing timely exit of the embryo from the spermatheca.
-
[
Mech Dev,
2012]
The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele,
ccdc-55(
ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The
ccdc-55 gene is found in an operon with
rnf-121 and
rnf-5, E3 ubiquitin ligases that target cell migration genes such as the -integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles
rnf-121(
ok848) and
rnf-5(
tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC.
-
[
Elife,
2019]
Coordination of neurite morphogenesis with surrounding tissues is crucial to the establishment of neural circuits, but the underlying cellular and molecular mechanisms remain poorly understood. We show that neurons in a <i>C. elegans</i> sensory organ, called the amphid, undergo a collective dendrite extension to form the sensory nerve. The amphid neurons first assemble into a multicellular rosette. The vertex of the rosette, which becomes the dendrite tips, is attached to the anteriorly migrating epidermis and carried to the sensory depression, extruding the dendrites away from the neuronal cell bodies. Multiple adhesion molecules including DYF-7, SAX-7, HMR-1 and DLG-1 function redundantly in rosette-to-epidermis attachment. PAR-6 is localized to the rosette vertex and dendrite tips, and promotes DYF-7 localization and dendrite extension. Our results suggest a collective mechanism of neurite extension that is distinct from the classical pioneer-follower model and highlight the role of mechanical cues from surrounding tissues in shaping neurites.
-
[
Genes (Basel),
2018]
<i>Caenorhabditis</i><i>elegans</i> is a valuable tool as an infection model toward the study of <i>Candida</i> species. In this work, we endeavored to develop a <i>C</i>. <i>elegans</i>-<i>Candida</i><i>parapsilosis</i> infection model by using the fungi as a food source. Three species of the C. parapsilosis complex (<i>C.</i><i>parapsilosis</i> (<i>sensu</i><i>stricto</i>), <i>Candida</i><i>orthopsilosis</i> and <i>Candida</i><i>metapsilosis</i>) caused infection resulting in <i>C. elegans</i> killing. All three strains that comprised the complex significantly diminished the nematode lifespan, indicating the virulence of the pathogens against the host. The infection process included invasion of the intestine and vulva which resulted in organ protrusion and hyphae formation. Importantly, hyphae formation at the vulva opening was not previously reported in <i>C</i>. <i>elegans</i>-<i>Candida</i> infections. Fungal infected worms in the liquid assay were susceptible to fluconazole and caspofungin and could be found to mount an immune response mediated through increased expression of <i>cnc</i>-<i>4</i>, <i>cnc</i>-<i>7</i>, and <i>fipr</i><i>-</i><i>22</i>/<i>23</i>. Overall, the <i>C</i>. <i>elegans</i>-<i>C</i>. <i>parapsilosis</i> infection model can be used to model <i>C</i>. <i>parapsilosis</i> host-pathogen interactions.
-
[
Front Cell Infect Microbiol,
2021]
The yeast <i>Candida albicans</i> exhibits multiple morphologies dependent on environmental cues. <i>Candida albicans</i> biofilms are frequently polymicrobial, enabling interspecies interaction through proximity and contact. The interaction between <i>C. albicans</i> and the bacterium, <i>Pseudomonas aeruginosa</i>, is antagonistic <i>in vitro, with P. aeruginosa</i> repressing the yeast-to-hyphal switch in <i>C. albicans</i>. Previous transcriptional analysis of <i>C. albicans</i> in polymicrobial biofilms with <i>P. aeruginosa</i> revealed upregulation of genes involved in regulation of morphology and biofilm formation, including <i>SET3</i>, a component of the Set3/Hos2 histone deacetylase complex (Set3C). This prompted the question regarding the involvement of <i>SET3</i> in the interaction between <i>C. albicans</i> and <i>P. aeruginosa</i>, both <i>in vitro</i> and <i>in vivo.</i> We found that <i>SET3</i> may influence early biofilm formation by <i>C. albicans</i> and the interaction between <i>C. albicans</i> and <i>P. aeruginosa</i>. In addition, although deletion of <i>SET3</i> did not alter the morphology of <i>C. albicans</i> in the presence of <i>P. aeruginosa</i>, it did cause a reduction in virulence in a <i>Caenorhabditis elegans</i> infection model, even in the presence of <i>P. aeruginosa.</i>
-
[
Oxid Med Cell Longev,
2020]
Naringin is a dihydroflavonoid, which is rich in several plant species used for herbal medicine. It has a wide range of biological activities, including antineoplastic, anti-inflammatory, antiphotoaging, and antioxidative activities. So it would be interesting to know if naringin has an effect on aging and aging-related diseases. We examined the effect of naringin on the aging of <i>Caenorhabditis elegans</i> (<i>C</i>. <i>elegans</i>). Our results showed that naringin could extend the lifespan of <i>C</i>. <i>elegans</i>. Moreover, naringin could also increase the thermal and oxidative stress tolerance, reduce the accumulation of lipofuscin, and delay the progress of aging-related diseases in <i>C</i>. <i>elegans</i> models of AD and PD. Naringin could not significantly extend the lifespan of long-lived mutants from genes in insulin/IGF-1 signaling (IIS) and nutrient-sensing pathways, such as <i>daf</i>-<i>2</i>, <i>akt</i>-<i>2</i>, <i>akt</i>-<i>1</i>, <i>eat</i>-<i>2</i>, <i>sir</i>-<i>2</i>.<i>1</i>, and <i>rsks</i>-<i>1</i>. Naringin treatment prolonged the lifespan of long-lived <i>glp</i>-<i>1</i> mutants, which have decreased reproductive stem cells. Naringin could not extend the lifespan of a null mutant of the fox-head transcription factor DAF-16. Moreover, naringin could increase the mRNA expression of genes regulated by <i>daf</i>-<i>16</i> and itself. In conclusion, we show that a natural product naringin could extend the lifespan of <i>C</i>. <i>elegans</i> and delay the progression of aging-related diseases in <i>C</i>. <i>elegans</i> models via DAF-16.
-
[
Heliyon,
2019]
This study identified the endoparasites in Brown rat (<i>Rattus norvegicus)</i> during May to July 2017 in Grenada, West Indies. A total of 162 rats, 76 females and 86 males were trapped from St. George and St. David parishes in Grenada. The collected fecal samples were examined for parasitic eggs and/or oocysts using simple fecal flotation technique. Adult parasites found in the intestinal tract were examined for identification. The overall prevalence of intestinal parasites among rats was 79 %. Ten helminth species were recovered, several of which were reported for the first time in rodents in Grenada. The internal parasites consist of seven nematodes (<i>Angiostrongylus</i> spp., <i>Nippostrongylus braziliensis</i>, <i>Heterakis spumosa</i>, <i>Strongyloides ratti</i>, <i>Aspiculuris tetraptera</i>, <i>Syphacia</i> spp. and <i>Protospirura</i> spp.), one cestode (<i>Hymenolepsis diminuta</i>), one acanthocephalan (<i>Moniliformis moniliformis</i>) and one protozoa species (<i>Eimeria</i> spp.). The most prevalent zoonotic species were <i>Angiostrongylus</i> spp. (35.2%), <i>Hymenolepsis diminuta</i> (7.4%) and <i>Moniliformis moniliformis</i> (3.1%). Several nonzoonotic endoparasites; which included <i>Nippostrongylus braziliensis</i> (50.6%), <i>Heterakis spumosa</i> (15.4%), <i>Strongyloides ratti</i> (43.2%), <i>Aspiculuris tetraptera</i> (2.5%), <i>Syphacia</i> spp<i>.</i> (1.9%), <i>Protospirura</i> spp. (1.2%) and <i>Eimeria</i> spp. (4.7%) were also identified. The most prevalent parasites were <i>Nippostrongylus brasiliensis</i> (50.6%), <i>Strongyloides ratti</i> (43.2%) and <i>Angiostrongylus spp.</i> (35.2%). Co-infections occurred with up to six species per rat showing different combinations of parasitic infections.
-
Shu CY, Li CW, Ko WC, Su YC, Chen YW, Lee NY, Su SL, Wu CJ, Chen PL, Li MC, Lin YT
[
Appl Environ Microbiol,
2019]
The present study aimed to isolate <i>Aeromonas</i> from fish sold in the markets as well as in sushi and seafood shops and compare their virulence factors and antimicrobial characteristics with those of clinical isolates. Among the 128 fish isolates and 47 clinical isolates, <i>A. caviae</i>, <i>A. dhakensis</i>, and <i>A. veronii</i> were the principal species. <i>A. dhakensis</i> isolates carried at least 5 virulence genes, more than other <i>Aeromonas</i> species. The predominant genotype of virulence genes was <i>hlyA/lip/alt/col/el</i> in both <i>A. dhakensis</i> and <i>A. hydrophila</i> isolates, <i>alt/col/ela</i> in <i>A. caviae</i> isolates, and <i>act</i> in <i>A. veronii</i> isolates. <i>A. dhakensis</i>, <i>A. hydrophila</i>, and <i>A. veronii</i> isolates more often exhibited hemolytic and proteolytic activity and showed greater virulence than <i>A. caviae</i> in <i>Caenorhabditis elegans</i> and the C2C12 cell line. However, the link between the genotypes and phenotypes of the studied virulence genes in <i>Aeromonas</i> species is not evident. Among the four major clinical <i>Aeromonas</i> species, nearly all (99.0%) <i>A. dhakensis</i>, <i>A. hydrophila</i>, and <i>A. veronii</i> isolates harbored <i>bla</i><sub>CphA</sub>, which encodes a carbapenemase, but only a minority (6.7%, 7/104) were nonsusceptible to carbapenem. Regarding AmpC -lactamase genes, <i>bla</i><sub>AQU-1</sub> was exclusively found in <i>A. dhakensis</i> isolates and <i>bla</i><sub>MOX3</sub> only in <i>A. caviae</i> isolates, but only 7.6% (6) of the 79 <i>Aeromonas</i> isolates carrying <i>bla</i><sub>AQU-1</sub> or <i>bla</i><sub>MOX3</sub> exhibited a cefotaxime resistance phenotype. In conclusion, fish <i>Aeromonas</i> isolates carry a variety of combinations of virulence and B-lactamase resistance genes and exhibit virulence phenotypes and antimicrobial resistance profiles similar to those of clinical isolates.<b>IMPORTANCE</b><i>Aeromonas</i> species can cause severe infections in immunocompromised individuals upon exposure to virulent pathogens in the environment, but the characteristics of environmental <i>Aeromonas</i> species remain unclear. Our study showed several pathogenic <i>Aeromonas</i> species possessing virulence traits and antimicrobial resistance similar to those of <i>Aeromonas</i> isolates causing clinical diseases were present in fish intended for human consumption in Tainan City.