-
[
Biochem Biophys Res Commun,
1999]
Mammalian thioredoxin reductases contain a TGA-encoded C-terminal penultimate selenocysteine (Sec) residue, and show little homology to bacterial, yeast, and plant thioredoxin reductases. Here we show that the nematode, Caenorhabditis elegans, contains two homologs related to the mammalian thioredoxin reductase family. The gene for one of these homologs contains a cysteine codon in place of TGA, and its product, designated TR-S, was previously suggested to function as thioredoxin reductase. The other gene contains TGA and its product is designated TR-Se. This Sec-containing thioredoxin reductase lacks a canonical Sec insertion sequence element in the 3'-untranslated area of the gene. TR-Se shows greater sequence similarity to mammalian thioredoxin reductase isozymes TR1 and TR2, whereas TR-S is more similar to TR3. TR-Se was identified as a thioredoxin reductase selenoprotein by labeling C. elegans with 75Se and characterizing the resulting 75Se-labeled protein by affinity and other column chromatography and gel-electrophoresis. TR-Se was expressed in Escherichia coli as a selenoprotein when a bacterial SECIS element was introduced downstream of the Sec TGA codon. The data show that TR-Se is the major naturally occurring selenoprotein in C. elegans, and suggest an important role for selenium and the thioredoxin system in this organism.
-
Shimono K, Honda N, Hasegawa T, Takahashi M, Hashimoto N, Sudo Y, Hayashi S, Mizutani K, Miyauchi S, Yamamoto M, Takagi S, Yamashita K, Tsukamoto T, Murata T
[
J Biol Chem,
2016]
Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance.
-
[
Am J Trop Med Hyg,
1990]
Host responses of jirds receiving a single subcutaneous inoculation of subperiodic Brugia malayi were compared with those of jirds similarly infected with B. pahangi. Parasite burdens, lymphatic lesion severity, granulomatous reactivity, antibody responses to parasite antigens, and complete blood cell counts were assessed at 60 and 150 days post-inoculation. At 60 days post-inoculation, percentages of adults recovered at necropsy and lymphatic lesion severity were greater in B. pahangi-infected jirds. At 150 days post-inoculation, lesion severity and percentages of worms recovered were similar in both infections. No significant differences were noted in either infection in reactivity to homologous or heterologous parasite antigens in any parameter measured. Similarities in the kinetics of the inflammatory reactivities of the 2 infections suggest that previous observations made in the jird-B. pahangi model could be utilized in designing studies using B. malayi. Further, the more marked lesion severity observed in B. pahangi-infected jirds and the relative ease of maintaining B. pahangi in the laboratory support the continued use of this system as a conceptual model for the study of lymphatic lesion pathogenesis.
-
[
Vet Parasitol,
2008]
The first event in the establishment of Ostertagia ostertagi infection in cattle is exsheathment. Exsheathment is the process whereby the L(2) cuticle retained from the previous molt is cast from the L(3). For those trichostrongyle nematode species with a predilection site in the abomasum, such as O. ostertagi, exsheathment is initiated as the larvae pass through the rumen. Although the stimulus for exsheathment is not known, previously reported biochemical studies suggest a major role for the enzyme carbonic anhydrase (CA). Partial support for this hypothesis comes from the reported failure of the Haemonchus contortus L(3) to exsheath following pretreatment with ethoxzolamide, a known inhibitor of CAs. Although convincing, a CA has not been previously reported from a trichostrongylid nematode. Therefore, our objective was to isolate a CA gene from O. ostertagi L(3) and begin initial characterization studies. This work resulted in the successful isolation, cloning and sequencing of the first CA isolated from a gastrointestinal nematode. The gene, designated OoCA, shows 90.5% sequence identity with the CA eukaryotic consensus sequence, 78% similarity to the Caenorhabiditis elegans
cah-6 and 55% similarity to the human CAIII. Sequence analysis of the genomic DNA encoding OoCA shows 8 exons and 7 introns covering 4.5kb. The first 1758 bases of the promoter region suggest OoCA may be regulated in part by transcription factors associated with hypoxic signaling and development. The mRNA profile of OoCA in exsheathing O. ostertagi L(3) suggests this particular CA may play a role in immediate early developmental events following exsheathment initiation.
-
[
Parasitol Res,
2000]
Brugia filarial nematodes are pathogenic lymphatic-dwelling parasites that, like other helminths, may modify the host's defense mechanisms by a major detoxification process involving glutathione-binding proteins such as glutathione S-transferases (GSTs). In the present study, soluble extracts of third-stage larvae, adult male and female worms, microfilariae of either B. pahangi or B. malayi or the adult worm excretory-secretory products of B. malayi were used to determine GST activity. These extracts and affinity-purified fractions of B. pahangi adult worms had a specific enzymatic activity when 1-chloro-2,4-dinitrobenzene was used as a substrate. The observance of this enzyme in all life cycle stages of Brugia spp. demonstrates its ubiquitous nature. Lavage of intraperitoneally infected jirds, but not that of uninfected jirds, also showed increased enzymatic activity, suggesting that GST is secreted in vivo. Soluble proteins of both Brugia spp. were strongly recognized by antibodies in sera from rabbits immunized with affinity-purified native GST of Onchocerca volvulus. Immunohistochemical studies localized these proteins in adult worms, demonstrating cross-reactivity between the GST of these two filarial nematodes. The effect of this enzyme on the motility and viability of adult worms, microfilariae, and larvae was tested in vitro using a battery of known GST inhibitors. Of all those tested, ethacrynic acid, N-ethylmalemide, 4-nitropyridine-oxide, or 1-chloro-2,4-dinitrobenzene at micromolar concentrations reduced the viability and motility of microfilariae, third-stage larvae, and adult worms. These results suggest that Brugia GSTs are major metabolic enzymes and may play an important role in the parasite's survival.
-
[
Infect Immun,
2000]
We have investigated the roles of gamma interferon (IFN-gamma) and interleukin-4 (IL-4) in host defense against Brugia malayi. Our data suggest that the lack of either IFN-gamma or IL-4 prolongs the time required to achieve sterile immunity, suggesting that both canonical type 1 and type 2 responses are involved in the clearance of infection.
-
[
J Immunol,
1998]
Human lymphatic filariasis, which afflicts an estimated 120 million people worldwide, is caused by the large nematode parasites Wuchereria bancrofti and Brugia malayi. Filarial nematodes require both an arthropod vector and a mammalian host to complete their life cycle. Within the definitive (mammalian) host, the lymphatic filarial parasites reside in the lymph nodes and lymphatics, a seemingly hostile environment for infectious agents, since the location exposes them to the immune defenses of the host. We present data here that suggest that the growth of B. malayi in the mammalian host is dependent on host NK cell function. Comparisons of worm survival and development in different strains of mice with varying levels of NK cell activity reveal that NOD/LtSz-scid/scid and NOD/LtSz-scid/scid B2m(null) mice (with diminished to absent NK cell activity respectively), are nonpermissive to worm growth, while C.B-17-scid/scid mice with normal NK cell activity are highly permissive. Depletion of NK cells in the permissive C57BL/6J-scid/scid mice renders them nonpermissive to B. malayi growth, whereas stimulation of NK cells in NOD/LtSz-scid/scid mice makes them permissive. Tg epsilon26 mice, which lack NK and T cells, are nonpermissive, but, when reconstituted with NK cells by adoptive transfer of bone marrow cells from C57BL16J-scid/scid mice, are rendered permissive. This requirement for NK cell activity may explain the site specificity of these parasites. Furthermore, these data suggest that the interaction of the host immune system with the filarial parasite is double edged, with both host protective and parasite growth-promoting activities emanating from the former.
-
[
Parasit Vectors,
2014]
BACKGROUND: Cysteine protease inhibitors of Brugia malayi have been ascribed to be involved in parasite development as well as to immunomodulate the host's immune response. In Onchocerca volvulus, Onchocystatin has been shown to induce partial protection in the mouse diffusion chamber vaccination model. In the present study we investigated the impact of vaccination with recombinant Bm-CPI-1 and Bm-CPI-2 proteins on protection against a subcutaneous challenge of B. malayi third stage larvae in gerbils. FINDINGS: Vaccination with E. coli derived recombinant B. malayi cysteine protease inhibitors (Bm-CPI-1 or -2) did not confer protection against B. malayi L3 challenge infection in gerbils but altered the homing of a significant number of adult worms from the lymphatics to the heart and lungs. CONCLUSION: Bm-CPI vaccination-induced alteration in worm migration is consistent with our previous observations in gerbils vaccinated with B. pahangi excretory-secretory (ES) proteins, which resulted in delayed migration of the L3s and altered the final location of adult worms. Similar observations have also been made in dogs vaccinated with Ancylostoma caninum proteins; an increased number of worms were recovered in the colon and not the expected small intestine. A change in the final niche was also reported in immune versus non-immune hosts of two other gut dwelling nematodes. Vaccination induced alteration of the parasite's final homing might be a rare or a common phenomenon, which unfortunately is rarely recorded. The reason for the alteration in the final niche selection by adult nematode worms following vaccination is unknown and necessitates further investigation.
-
[
Exp Parasitol,
2002]
Standard, immunocompetent, inbred strains of mice are non-permissive for infection with the human filarial nematode, Brugia malayi or the closely related Brugia pahangi. This non-permissiveness allows one to address the mechanism(s) that might be used by mammalian hosts to eliminate large, multicellular, metazoan, extracellular invertebrate pathogens. We describe here the time course of intraperitoneal Brugian infections in naive and primed +/+ mice from two commonly used, inbred laboratory strains (C57BL/6J and BALB/cByJ). We believe that this documentation of the course of infection in normal mice will serve as a reference for future studies using mice with gene-targeted immunological deficits or which have been pharmacologically or immunologically manipulated to manifest such deficits. Our data show that even though both strains of mice eliminate the parasite before the onset of patency, there are significant differences in the time course of infection and in the fractions of input larvae that can be recovered at any time after infection. In a secondary infection, the time course of elimination is accelerated. We examined the cells in the peritoneal cavity, the site of infection, by flow microfluorimetry using forward and side scatter properties and cell surface antigen expression using fluorescent antibodies. These studies reveal a complex cellular pattern, predominated by B lymphocytes, macrophages, and eosinophils. The most notable gross morphological findings at necropsy during the phase of elimination of the parasite are nodules of tissue containing larvae, which appear viable in some cases and undergoing various stages of disintegration in others. These nodules, which are histologically granulomas, are primarily composed of macrophages and eosinophils, with few if any lymphocytes. Transmission electron micrographs reveal that eosinophils can penetrate under the cuticles of the larvae and be seen in close approximation with internal structures. These granulomas may represent an important mechanism by which worms are eliminated.
-
[
Vet Parasitol,
1992]
Methods have been described to assist in the detection of anthelmintic resistance in strongylid nematodes of ruminants, horses and pigs. Two tests are recommended, an in vivo test, the faecal egg count reduction test for use in infected animals, and an in vitro test, the egg hatch test for detection of benzimidazole resistance in nematodes that hatch shortly after embryonation. Anaerobic storage for submission of faecal samples from the field for use in the in vitro test is of value and the procedure is described. The tests should enable comparable data to be obtained in surveys in all parts of the world.