-
[
Trends Mol Med,
2007]
Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (T(reg))-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca(2+)-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in T(reg) cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (T(h) IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.
-
[
Front Physiol,
2014]
The recent discovery of DNA methylation in the nematode T.spiralis may raise the possibility of using it as a potential model organism for epigenetic studies instead of C. elegans, which is deficient in this important epigenetic modification. In contrast to the free-living nematode C. elegans, T. spiralis is a parasitic worm that possesses a complicated life cycle and undergoes a complex developmental regulation of genes. We emphasize that the differential methylomes in the different life-history stages of T. spiralis can provide insight on how DNA methylation is triggered and regulated. In particular, we have demonstrated that DNA methylation is involved in the regulation of its parasitism-related genes. Further computational analyses indicated that the regulatory machinery for DNA methylation can also be found in the T. spiralis genome. By a logical extension of this point, we speculate that comprehensively addressing the epigenetic machinery of T. spiralis may help to understand epigenetics in invertebrates. Furthermore, considering the implication of epigenetics in metazoan parasitism, using T. spiralis as an epigenetic model organism may further contribute to drug development against metazoan parasites.
-
[
Trends Cell Biol,
2010]
A wealth of evidence underscores the tight link between oxidative stress, neurodegeneration and aging. When the level of excess reactive oxygen species (ROS) increases in the cell, a phenomenon characteristic of aging, DNA is damaged, proteins are oxidized, lipids are degraded and more ROS are produced, all culminating in significant cell injury. Recently we showed that in the nematode, Caenorhabditis elegans, oxidation of K(+) channels by ROS is a major mechanism underlying the loss of neuronal function. The C. elegans results support an argument that K(+) channels controlling neuronal excitability and survival might provide a common, functionally important substrate for ROS in aging mammals. Here we discuss the implications that oxidation of K(+) channels by ROS might have for the mammalian brain during normal aging, as well as in neurodegenerative diseases such as Alzheimer's and Parkinson's. We argue that oxidation of K(+) channels by ROS is a common theme in the aging brain and suggest directions for future experimentation.
-
[
Physiology (Bethesda),
2009]
Recent work shows that transport-independent as well as transport-dependent functions of ion transporters, and in particular the Na-K-ATPase, are required for formation and maintenance of several intercellular junctions. Furthermore, these junctional and other nonjunctional functions of ion transporters contribute to development of epithelial tubes. Here, we consider what has been learned about the roles of ion pumps in formation of junctions and epithelial tubes in mammals, zebrafish, Drosophila, and C. elegans. We propose that asymmetric association of the Na-K-ATPase with cell junctions early in metazoan evolution enabled vectorial transcellular ion transport and control of intraorganismal environment. Ion transport-independent functions of the Na-K-ATPase arose as junctional complexes evolved.
-
[
J Biomed Sci,
2019]
MAP4K3 (also named GLK) is a serine/threonine kinase, which belongs to the mammalian Ste20-like kinase family. At 22years of age, GLK was initially cloned and identified as an upstream activator of the MAPK JNK under an environmental stress and proinflammatory cytokines. The data derived from GLK-overexpressing or shRNA-knockdown cell lines suggest that GLK may be involved in cell proliferation through mTOR signaling. GLK phosphorylates the transcription factor TFEB and retains TFEB in the cytoplasm, leading to inhibition of cell autophagy. After generating and characterizing GLK-deficient mice, the important in vivo roles of GLK in T-cell activation were revealed. In T cells, GLK directly interacts with and activates PKC through phosphorylating PKC at Ser-538 residue, leading to activation of IKK/NF-B. Thus, GLK-deficient mice display impaired T-cell-mediated immune responses and decreased inflammatory phenotypes in autoimmune disease models. Consistently, the percentage of GLK-overexpressing T cells is increased in the peripheral blood from autoimmune disease patients; the GLK-overexpressing T cell population is correlated with disease severity of patients. The pathogenic mechanism of autoimmune disease by GLK overexpression was unraveled by characterizing T-cell-specific GLK transgenic mice and using biochemical analyses. GLK overexpression selectively promotes IL-17A transcription by inducing the AhR-RORt complex in T cells. In addition, GLK overexpression in cancer tissues is correlated with cancer recurrence of human lung cancer and liver cancer; the predictive power of GLK overexpression for cancer recurrence is higher than that of pathologic stage. GLK directly phosphorylates and activates IQGAP1, resulting in induction of Cdc42-mediated cell migration and cancer metastasis. Furthermore, treatment of GLK inhibitor reduces disease severity of mouse autoimmune disease models and decreases IL-17A production of human autoimmune T cells. Due to the inhibitory function of HPK1/MAP4K1 in T-cell activation and the promoting effects of GLK on tumorigenesis, HPK1 and GLK dual inhibitors could be useful therapeutic drugs for cancer immunotherapy. In addition, GLK deficiency results in extension of lifespan in Caenorhabditis elegans and mice. Taken together, targeting MAP4K3 (GLK) may be useful for treating/preventing autoimmune disease, cancer metastasis/recurrence, and aging.
-
[
Trends in Pharmacological Sciences,
2005]
K+ channels that possess two pore domains in each channel subunit are common in many animal tissues. Such channels are generated from large families of subunits and are implicated in several functions, including temperature sensation, responses to ischaemia, K+ homeostasis and setting the resting potential of the cell. Their activity can be modulated by polyunsaturated fatty acids, pH and oxygen, and some are candidate targets of volatile anaesthetics. However, despite their potential as targets for novel drugs for human health, comparatively little is known about the molecular basis of their diverse physiological and pharmacological properties. Genetic model organisms have considerable potential for improving our understanding of these channels. In this article, we review the contributions of some of these genetic model organisms to recent advances in our knowledge of two-pore-domain K+
-
[
IUBMB Life,
2007]
Most tRNAs share a common secondary structure containing a T arm, a D arm, an anticodon arm and an acceptor stem. However, there are some exceptions. Most nematode mitochondrial tRNAs and some animal mitochondrial tRNAs lack the T arm, which is necessary for binding to canonical elongation factor Tu (EF-Tu). The mitochondria of the nematode Caenorhabditis elegans have a unique EF-Tu, named EF-Tu1, whose structure has supplied clues as to how truncated tRNAs can work in translation. EF-Tu1 has a C-terminal extension of about 60 aa that is absent in canonical EF-Tu. Recent data from our laboratory strongly suggests that EF-Tu1 recognizes the D-arm instead of the T arm by a mechanism involving this C-terminal region. Further biochemical analysis of mitochondrial tRNAs and EF-Tu from the distantly related nematode Trichinella spp. and sequence information on nuclear and mitochondrial DNA in arthropods suggest that T-armless tRNAs may have arisen as a result of duplication of the EF-Tu gene. These studies provide valuable insights into the co-evolution of RNA and RNA-binding proteins. IUBMB Life, 59: 68-75, 2007.
-
[
Nature Cell Biology,
1999]
Studies on the role of cholesterol- and caveolin-rich membrane microdomains in localizing Ras to the plasma membrane and enabling its signalling activity reveal intriguing differences both between mammalian H-Ras and K-Ras and between requirements for Ras signalling in mammalian and nematode cells.
-
[
Biochim Biophys Acta,
2010]
Precise regulation of the intracellular concentration of chloride [Cl-]i is necessary for proper cell volume regulation, transepithelial transport, and GABA neurotransmission. The Na-K-2Cl (NKCCs) and K-Cl (KCCs) cotransporters, related SLC12A transporters mediating cellular chloride influx and efflux, respectively, are key determinants of [Cl-]i in numerous cell types, including red blood cells, epithelial cells, and neurons. A common "chloride/volume-sensitive kinase", or related system of kinases, has long been hypothesized to mediate the reciprocal but coordinated phosphoregulation of the NKCCs and the KCCs, but the identity of these kinase(s) has remained unknown. Recent evidence suggests that the WNK (with no lysine = K) serine-threonine kinases directly or indirectly via the downstream Ste20-type kinases SPAK/OSR1, are critical components of this signaling pathway. Hypertonic stress (cell shrinkage), and possibly decreased [Cl-]i, triggers the phosphorylation and activation of specific WNKs, promoting NKCC activation and KCC inhibition via net transporter phosphorylation. Silencing WNK kinase activity can promote NKCC inhibition and KCC activation via net transporter dephosphorylation, revealing a dynamic ability of the WNKs to modulate [Cl-]. This pathway is essential for the defense of cell volume during osmotic perturbation, coordination of epithelial transport, and gating of sensory information in the peripheral system. Commiserate with their importance in serving these critical roles in humans, mutations in WNKs underlie two different Mendelian diseases, pseudohypoaldosteronism type II (an inherited form of salt-sensitive hypertension), and hereditary sensory and autonomic neuropathy type 2. WNKs also regulate ion transport in lower multicellular organisms, including Caenorhabditis elegans, suggesting that their functions are evolutionarily-conserved. An increased understanding of how the WNKs regulate the Na-K-2Cl and K-Cl cotransporters may provide novel opportunities for the selective modulation of these transporters, with ramifications for common human diseases like hypertension, sickle cell disease, neuropathic pain, and epilepsy.
-
[
Bioessays,
2000]
Classical mutations at the mouse Brachyury (T) locus were discovered because they lead to shortened tails in heterozygous newborns. no tail (ntl) mutants in the zebrafish, as their name suggests, show a similar phenotype. In Drosophila, mutants in the brachyenteron (byn) gene disrupt hindgut formation. These genes all encode T-box proteins, a class of sequence-specific DNA binding proteins and transcription factors. Mutations in the C. elegans
mab-9 gene cause massive defects in the male tail because of failed fate decisions in two tail progenitor cells. In a recent paper, Woollard and Hodgkin have cloned the
mab-9 gene and found that it too encodes a T-box protein, similar to Brachyury in vertebrates and brachyenteron in Drosophila. The authors suggest that their results support models for an evolutionarily ancient role for these genes in hindgut formation. We will discuss this proposal and try to decide whether the gene sequences, gene interactions and gene expression patterns allow any conclusions to be made about the rear end of the ancestral metazoan.