[
Protein Sci,
2013]
The accumulation of cross--sheet amyloid fibrils is the hallmark of amyloid diseases. Recently, we reported the discovery of amyloid disaggregase activities in extracts from mammalian cells and Caenorhabditis elegans. However, we have discovered a problem with the interpretation of our previous results as A disaggregation in vitro. Here, we show that A fibrils adsorb to the plastic surface of multiwell plates and Eppendorf tubes. This adsorption is markedly increased in the presence of complex biological mixtures subjected to a denaturing air-water interface. The time-dependent loss of thioflavin T fluorescence that we interpreted previously as disaggregation is due to increased adsorption of A amyloid to the surfaces of multiwell plates and Eppendorf tubes in the presence of biological extracts. As the proteins in biological extracts denature over time at the air-water interface due to agitation/shaking, their adsorption increases, in turn promoting adsorption of amyloid fibrils. We delineate important control experiments that quantify the extent of amyloid adsorption to the surface of plastic and quartz containers. Based on the results described in this article, we conclude that our interpretation of the kinetic fibril disaggregation assay data previously reported in Bieschke et al., Protein Sci 2009;18:2231-2241 and Murray et al., Protein Sci 2010;19:836-846 is invalid when used as evidence for a disaggregase activity. Thus, we correct the two prior publications reporting that worm or mammalian cell extracts disaggregate A amyloid fibrils in vitro at 37C (see Corrigenda in this issue of Protein Science). We apologize for misinterpreting our previous data and for any confounding experimental efforts this may have caused.
[
Bioinformatics,
2019]
MOTIVATION: The advent of in vivo automated techniques for single-cell lineaging, sequencing, and analysis of gene expression has begun to dramatically increase our understanding of organismal development. We applied novel meta-analysis and visualization techniques to the EPIC single-cell-resolution developmental gene expression dataset for C. elegans from Bao, Murray, Waterston et al. to gain insights into regulatory mechanisms governing the timing of development. RESULTS: Our meta-analysis of the EPIC dataset revealed that a simple linear combination of the expression levels of the developmental genes is strongly correlated with the developmental age of the organism, irrespective of the cell division rate of different cell lineages. We uncovered a pattern of collective sinusoidal oscillation in gene activation, in multiple dominant frequencies and in multiple orthogonal axes of gene expression, pointing to the existence of a coordinated, multi-frequency global timing mechanism. We developed a novel method based on Fisher's Discriminant Analysis (FDA) to identify gene expression weightings that maximally separate traits of interest, and found that remarkably, simple linear gene expression weightings are capable of producing sinusoidal oscillations of any frequency and phase, adding to the growing body of evidence that oscillatory mechanisms likely play an important role in the timing of development. We cross-linked EPIC with gene ontology and anatomy ontology terms, employing FDA methods to identify previously unknown positive and negative genetic contributions to developmental processes and cell phenotypes. This meta-analysis demonstrates new evidence for direct linear and/or sinusoidal mechanisms regulating the timing of development. We uncovered a number of previously unknown positive and negative correlations between developmental genes and developmental processes or cell phenotypes. Our results highlight both the continued relevance of the EPIC technique, and the value of meta-analysis of previously published results. The presented analysis and visualization techniques are broadly applicable across developmental and systems biology. AVAILABILITY: Analysis software available upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at the publisher's website.