-
[
Curr Biol,
2019]
Caenorhabditis elegans is associated in nature with a species-rich, distinct microbiota, which was characterized only recently [1]. Thus, our understanding of the relevance of the microbiota for nematode fitness is still at its infancy. One major benefit that the intestinal microbiota can provide to its host isprotection against pathogen infection [2]. However, the specific strains conferring the protection and the underlying mechanisms of microbiota-mediatedprotection are often unclear [3]. Here, we identify natural C.elegans microbiota isolates that increase C.elegans resistance to pathogen infection. We show that isolates of the Pseudomonas fluorescens subgroup provide paramount protection from infection with the natural pathogen Bacillus thuringiensis through distinct mechanisms. We found that the P.lurida isolates MYb11 and MYb12 (members of the P.fluorescens subgroup) protect C.elegans against B.thuringiensis infectionby directly inhibiting growth of the pathogen both invitro and invivo. Using genomic and biochemical analyses, we further demonstrate that MYb11 and MYb12 produce massetolide E, acyclic lipopeptide biosurfactant of the viscosin group [4, 5], which isactive against pathogenic B.thuringiensis. In contrast to MYb11 and MYb12, P.fluorescens MYb115-mediated protection involves increased resistance without inhibition of pathogen growth and most likely depends on indirect, host-mediated mechanisms. This work provides new insight intothe functional significance of the C.elegans natural microbiota and expands our knowledge of bacteria-derived compounds that can influence pathogen colonization in the intestine of an animal.
-
Dirksen P, Waschina S, Petersen C, Kaleta C, Dierking K, Zimmermann J, Tholey A, Yang W, Leippe M, Schulenburg H, Pees B, Rosenstiel P
[
Front Microbiol,
2019]
The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage of the nematode <i>Caenorhabditis elegans</i> as a tractable, experimental model system and assessed the inducible transcriptome response after colonization with members of its native microbiota. For this study, we focused on two isolates of the genus <i>Ochrobactrum</i>. These bacteria are known to be abundant in the nematode's microbiota and are capable of colonizing and persisting in the nematode gut, even under stressful conditions. The transcriptome response was assessed across development and three time points of adult life, using general and <i>C. elegans</i>-specific enrichment analyses to identify affected functions. Our assessment revealed an influence of the microbiota members on the nematode's dietary response, development, fertility, immunity, and energy metabolism. This response is mainly regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets among the differentially expressed genes. We compared our transcriptome results with a corresponding previously characterized proteome data set, highlighting a significant overlap in the differentially expressed genes, the affected functions, and ELT-2 target genes. Our analysis further identified a core set of 86 genes that consistently responded to the microbiota members across development and adult life, including several C-type lectin-like genes and genes known to be involved in energy metabolism or fertility. We additionally assessed the consequences of induced gene expression with the help of metabolic network model analysis, using a previously established metabolic network for <i>C. elegans</i>. This analysis complemented the enrichment analyses by revealing an influence of the <i>Ochrobactrum</i> isolates on <i>C. elegans</i> energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing microbiota isolates on <i>C. elegans</i> life history and thereby provide a framework for further analysis of microbiota-mediated host functions.
-
Zimmermann J, Assie A, Shapira M, Zhang F, Tietje AM, Marsh SA, Felix MA, Schulenburg H, Kaleta C, Dirksen P, Samuel BS
[
G3 (Bethesda),
2020]
The study of microbiomes by sequencing has revealed a plethora of correlations between microbial community composition and various life-history characteristics of the corresponding host species. However, inferring causation from correlation is often hampered by the sheer compositional complexity of microbiomes, even in simple organisms. Synthetic communities offer an effective approach to infer cause-effect relationships in host-microbiome systems. Yet the available communities suffer from several drawbacks, such as artificial (thus non-natural) choice of microbes, microbe-host mismatch (e.g. human microbes in gnotobiotic mice), or hosts lacking genetic tractability. Here we introduce CeMbio, a simplified natural <i>Caenorhabditis elegans</i> microbiota derived from our previous meta-analysis of the natural microbiome of this nematode. The CeMbio resource is amenable to all strengths of the <i>C. elegans</i> model system, strains included are readily culturable, they all colonize the worm gut individually, and comprise a robust community that distinctly affects nematode life-history. Several tools have additionally been developed for the CeMbio strains, including diagnostic PCR primers, completely sequenced genomes, and metabolic network models. With CeMbio, we provide a versatile resource and toolbox for the in-depth dissection of naturally relevant host-microbiome interactions in <i>C. elegans</i>.
-
Bunk B, Schulenburg H, Yang W, Leippe M, Hoeppner MP, Zimmermann J, Sproer C, Aidley J, Obeng N, Pees B, Kaleta C, Dierking K, Kissoyan KA, Petersen C, Waschina S
[
ISME J,
2019]
The microbiota is generally assumed to have a substantial influence on the biology of multicellular organisms. The exact functional contributions of the microbes are often unclear and cannot be inferred easily from 16S rRNA genotyping, which is commonly used for taxonomic characterization of bacterial associates. In order to bridge this knowledge gap, we here analyzed the metabolic competences of the native microbiota of the model nematode Caenorhabditis elegans. We integrated whole-genome sequences of 77 bacterial microbiota members with metabolic modeling and experimental characterization of bacterial physiology. We found that, as a community, the microbiota can synthesize all essential nutrients for C. elegans. Both metabolic models and experimental analyses revealed that nutrient context can influence how bacteria interact within the microbiota. We identified key bacterial traits that are likely to influence the microbe's ability to colonize C. elegans (i.e., the ability of bacteria for pyruvate fermentation to acetoin) and affect nematode fitness (i.e., bacterial competence for hydroxyproline degradation). Considering that the microbiota is usually neglected in C. elegans research, the resource presented here will help our understanding of this nematode's biology in a more natural context. Our integrative approach moreover provides a novel, general framework to characterize microbiota-mediated functions.
-
[
BMC Genomics,
2007]
ABSTRACT: BACKGROUND: In the genome of Caenorhabditis elegans, homopolymeric poly-G/poly-C tracts (G/C tracts) exist at high frequency and are maintained by the activity of the DOG-1 protein. The frequency and distribution of G/C tracts in the genomes of C. elegans and the related nematode, C. briggsae were analyzed to investigate possible biological roles for G/C tracts. RESULTS: In C. elegans, G/C tracts are distributed along every chromosome in a non-random pattern. Most G/C tracts are within introns or are close to genes. Analysis of SAGE data showed that G/C tracts correlate with the levels of regional gene expression in C. elegans. G/C tracts are over-represented and dispersed across all chromosomes in another Caenorhabditis species, C. briggase. However, the positions and distribution of G/C tracts in C. briggsae differ from those in C. elegans. Furthermore, the C. briggsae
dog-1 ortholog CBG19723 can rescue the mutator phenotype of C. elegans
dog-1 mutants. CONCLUSIONS: The abundance and genomic distribution of G/C tracts in C. elegans, the effect of G/C tracts on regional transcription levels, and the lack of positional conservation of G/C tracts in C. briggsae suggest a role for G/C tracts in chromatin structure but not in the transcriptional regulation of specific genes.
-
Horng JC, Hsu HL, Nazilah KR, Wang CC, Wang TL, Wang SC, Antika TR, Chuang TH, Chrestella DJ, Wang SW, Tseng YK, Pan HC
[
J Biol Chem,
2023]
Alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout its biology. Nevertheless, its C-terminal domain (C-Ala) is highly diverged and has been shown to play a role in either tRNA or DNA binding. Interestingly, we discovered that Caenorhabditis elegans cytoplasmic C-Ala (Ce-C-Ala<sub>c</sub>) robustly binds both ligands. How Ce-C-Ala<sub>c</sub> targets its cognate tRNA and whether a similar feature is conserved in its mitochondrial counterpart remain elusive. We show that the N- and C-terminal subdomains of Ce-C-Ala<sub>c</sub> are responsible for DNA and tRNA binding, respectively. Ce-C-Ala<sub>c</sub> specifically recognized the conserved invariant base G<sup>18</sup> in the D-loop of tRNA<sup>Ala</sup> through a highly conserved lysine residue, K934. Despite bearing little resemblance to other C-Ala domains, C. elegans mitochondrial C-Ala (Ce-C-Ala<sub>m</sub>) robustly bound both tRNA<sup>Ala</sup> and DNA and maintained targeting specificity for the D-loop of its cognate tRNA. This study uncovers the underlying mechanism of how C. elegans C-Ala specifically targets the D-loop of tRNA<sup>Ala</sup>.
-
[
Journal of Thermal Biology,
1995]
1. The patterns of HSP70 expression induced in Caenorhabditis elegans by mild (31 degrees C) or severe (34 degrees C) heat shock, and by cadmium ions at 31 degrees C, have been compared with those expressed constitutively ill 20 degrees C controls by 1- and a-dimensional immunoblotting. 2. The 2D spot patterns become more complex with increasing severity of stress (34 degrees C > 31 degrees C + Cd > 31 degrees C > 20 degrees C). 3. A stress-inducible transgene construct is minimally active at 31 degrees C, but is abundantly expressed in the presence of cadmium or at 34 degrees C. 4. Differing degrees or types of stress may differentially induce available
hsp70 -
[
J Nanosci Nanotechnol,
2018]
Uniform and hydrophilic carbon quantum dots (C-QDs) were synthesized by calcination and NaOH treatment from an organo-templated zeolite precursor. The color of luminescence was determined by the concentration of C-QDs. These variable-color C-QDs were applied for the first time in the imaging of Caenorhabditis elegans (C. elegans) as a model organism. The effects of C-QDs and possible behavioral changes in C. elegans were evaluated under treatment conditions. We could clearly observe distribution of C-QDs in C. elegans from the fluorescence images. Furthermore, we observed significant and detectable fluorescence quenching of the C-QDs by free radicals in C. elegans. Our work affirms that C-QDs can be developed as imaging probes and as potential fluorescent quantitative probes for detecting free radicals.
-
Kuenzel S, Sieber M, Schulenburg H, Petersen C, Traulsen A, Zimmermann J, Moitinho-Silva L, Kaleta C, Bluhm L, Piecyk A, Johnke J
[
mBio,
2024]
The microbiome expresses a variety of functions that influence host biology. The range of functions depends on the microbiome's composition, which can change during the host's lifetime due to neutral assembly processes, host-mediated selection, and environmental conditions. To date, the exact dynamics of microbiome assembly, the underlying determinants, and the effects on host-associated functions remain poorly understood. Here, we used the nematode Caenorhabditis elegans and a defined community of fully sequenced, naturally associated bacteria to study microbiome dynamics and functions across a major part of the worm's lifetime of hosts under controlled experimental conditions. Bacterial community composition initially shows strongly declining levels of stochasticity, which increases during later time points, suggesting selective effects in younger animals as opposed to more random processes in older animals. The adult microbiome is enriched in genera Ochrobactrum and Enterobacter compared to the direct substrate and a host-free control environment. Using pathway analysis, metabolic, and ecological modeling, we further find that the lifetime assembly dynamics increase competitive strategies and gut-associated functions in the host-associated microbiome, indicating that the colonizing bacteria benefit the worm. Overall, our study introduces a framework for studying microbiome assembly dynamics based on stochastic, ecological, and metabolic models, yielding new insights into the processes that determine host-associated microbiome composition and function.Importance: The microbiome plays a crucial role in host biology. Its functions depend on the microbiome composition that can change during a host's lifetime. To date, the dynamics of microbiome assembly and the resulting functions still need to be better understood. This study introduces a new approach to characterize the functional consequences of microbiome assembly by modeling both the relevance of stochastic processes and metabolic characteristics of microbial community changes. The approach was applied to experimental time-series data obtained for the microbiome of the nematode Caenorhabditis elegans across the major part of its lifetime. Stochastic processes played a minor role, whereas beneficial bacteria as well as gut-associated functions enriched in hosts. This indicates that the host might actively shape the composition of its microbiome. Overall, this study provides a framework for studying microbiome assembly dynamics and yields new insights into C. elegans microbiome functions.
-
[
Mol Immunol,
2021]
Candida albicans is an opportunistic fungal human pathogen that has been causing an increasing number of deaths each year. Due to the widespread use of broad-spectrum antibiotics and immunosuppressants, C. albicans resistance to these therapies has increased. Thus, natural plant inhibitors are being investigated for treating C. albicans infections. Schinifoline is a 4-quinolinone alkaloid with antibacterial, insecticidal, antitumor, and other biological activities. Here, we explored the effects of schinifoline on C. albicans in C. elegans and extracted RNA from uninfected C. elegans, C. elegans infected with C. albicans, and C. elegans infected with C. albicans and treated with 100 mg/l schinifoline. Our results showed that there were significant differences among the three groups. The GO and KEGG pathway analysis suggested that the pathogenicity of C. albicans to C. elegans was caused by abnormal protein function. Schinifoline regulates lysosomal pathway related genes that accelerate the metabolism and degradation of abnormal proteins, thereby inhibiting the negative effects of C. albicans in vivo. These findings advance our understanding of the molecular mechanisms underlying schinifoline inhibition of C. albicans.