-
[
Invest Ophthalmol Vis Sci,
2000]
PURPOSE: A murine model of helminth-induced keratitis (river blindness) that is characterized by a biphasic recruitment of neutrophils (days 1-3) and eosinophils (days 3+) to the cornea has been developed. The purpose of this study was to determine the relative contribution of P- and E-selectin in recruitment of these inflammatory cells from limbal vessels to the corneal stroma. METHODS: P- and E-selectin gene knockout (-/-) mice were immunized with antigens extracted from the parasitic helminth Onchocerca volvulus. One week after the last immunization, parasite antigens were injected directly into the corneal stroma. Mice were killed on days 1 and 3 postchallenge, and eyes were immunostained with either anti-eosinophil major basic protein (MBP) or with anti-neutrophil Ab. The number of cells in the cornea was determined by direct counting. RESULTS: Recruitment of eosinophils to the cornea was significantly impaired in P-selectin(-/-) mice (63.9% fewer eosinophils on day 1 [P: = 0.0015], and 61% fewer on day 3 [P: < 0.0001]) compared with control C57BL/6 mice. In contrast, P-selectin deficiency had no effect on neutrophil recruitment to the cornea. There was no inhibition of eosinophil and neutrophil migration to the corneas of E-selectin(-/-) mice, indicating that there is no direct role for this adhesion molecule in helminth-induced keratitis. CONCLUSIONS: The present study demonstrates that P-selectin is an important mediator of eosinophil recruitment to the cornea. P-selectin interactions may therefore be potential targets for immunotherapy in eosinophil-mediated ocular inflammation.
-
[
Oncogene,
1999]
1q21 is frequently involved in different types of translocation in many types of cancers. Jumping translocation (JT) is an unbalanced translocation that comprises amplified chromosomal segments jumping to various telomeres. In this study, we identified a novel gene human JTB (Jumping Translocation Breakpoint) at 1q21, which fused with the telomeric repeats of acceptor telomeres in a case of JT. hJTB (human JTB) encodes a trans-membrane protein that is highly conserved among divergent eukaryotic species. JT results in a hJTB truncation, which potentially produces an hJTB product devoid of the trans-membrane domain. hJTB is located in a gene-rich region at 1q21, called EDC (Epidermal Differentiation Complex). This is the first report identifying the gene involved in unbalanced translocations at 1q21.
-
[
Microbes Infect,
2010]
Transforming growth factor-beta (TGF-beta) is a key cytokine in immune regulation, cell differentiation, development, wound healing, and tissue remodelling. It mediates immunosuppression in filarial infections facilitating parasite persistence, while attenuating immunopathology, which is induced by migrating microfilariae. Immunosuppression rises with parasite burden, but it remains unknown whether filariae elicit local release of immunosuppressive cytokines. Therefore, using immunohistology, we investigated the expression of stable, released latent TGF-beta1 in subcutaneous nodules from highly infected, hyporeactive onchocerciasis patients, harbouring adult Onchocerca volvulus. Since many cell types produce TGF-beta, we elucidated the cellular source, distribution and dependency on the worms' sex, productivity and vitality. We found TGF-beta1 to be abundantly expressed by T cells, plasma/B cells, macrophages, mast cells, fibrocytes, and vascular endothelial cells, particularly in onchocercomas with productive or previously productive females, damaged, dead and resorbed adult worms or microfilariae. We conclude TGF-beta to be antigen induced by the filariae since expression was scarce around subcutaneous arthropods or cholesterol crystals in onchocercomas. Enhanced expression after ivermectin or endobacteria-depleting doxycycline treatment indicates induction to depend on filariae and not on Wolbachia endobacteria. TGF-beta(+) cells were reduced in HIV co-infection. This finding of local and sustained TGF-beta induction by vital and dead filariae, untreated and after treatment, adds new aspects to immunomodulation by helminths.
-
[
Infect Immun,
2000]
Previous studies demonstrated that in the murine model of Onchocerca volvulus keratitis, neutrophils and eosinophils are recruited into the cornea in a biphasic manner in response to intrastromal injection. To determine if CD4(+) T cells regulate migration of neutrophils and eosinophils into the cornea, CD4(+) cells were depleted using monoclonal antibody GK1.5 before intrastromal injection of parasite antigens. Depletion of CD4(+) cells abrogated corneal opacification at later but not early stages of disease. Consistent with this observation, CD4 depletion significantly impaired recruitment of eosinophils to the cornea but had no effect on neutrophils. These data indicate that CD4(+) T cells mediate sustained O. volvulus keratitis by regulating eosinophil recruitment to the cornea.
-
[
J Neurophysiol,
2015]
Although the ability to detect humidity (i.e., hygrosensation) represents an important sensory attribute in many animal species (including humans), the neurophysiological and molecular bases of such sensory ability remain largely unknown in many animals. Recently, Russell and colleagues (Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT. Proc Natl Acad Sci USA 111: 8269-8274, 2014) provided for the first time neuromolecular evidence for the sensory integration of thermal and mechanical sensory cues which underpin the hygrosensation strategy of an animal (i.e., the free-living roundworm Caenorhabditis elegans) that lacks specific sensory organs for humidity detection (i.e., hygroreceptors). Due to the remarkable similarities in the hygrosensation transduction mechanisms used by hygroreceptor-provided (e.g., insects) and hygroreceptor-lacking species (e.g., roundworms and humans), the findings of Russell et al. highlight potentially universal mechanisms for humidity detection that could be shared across a wide range of species, including humans.