-
[
WormBook,
2005]
Nervous systems are characterized by an astounding degree of cellular diversity. The nematode Caenorhabditis elegans has served as a valuable model system to define the genetic programs that serve to generate cellular diversity in the nervous system. This review discusses neuronal diversity in C. elegans and provides an overview of the molecular mechanisms that define and specify neuronal cell types in C. elegans.
-
The world of modern biology is unified by genetics. Genetic approaches have the ability to transcend species and provide cross-links between fields for several reasons. First, is the fact that all species are evolutionarily related. Thus, distinct species have similar gene function, and DNA sequence homology can be found between even distantly related species. Indeed, DNA sequence homology is used as a metric device to determine evolutionary relationships among species. Second, molecular genetic manipulation changes both the genotype and phenotype of an organism. Such manipulations represent an extremely fine-scale tool for dissection of the underlying biochemistry, physiology, anatomy, and development of an individual species. Because virtually any gene can be manipulated at will in many species, a dedicated approach can lead to an unraveling of the relationship between genotype and phenotype for almost any gene in these species.....
-
[
WormBook,
2007]
The mechanism of action of volatile anesthetics remains an enigma, despite their worldwide use. The nematode C. elegans has served as an excellent model to unravel this mystery. Genes and gene sets that control the behavior of the animal in volatile anesthetics have been identified, using multiple endpoints to mimic the phenomenon of anesthesia in man. Some of these studies have clear translational implications in more complicated organisms.
-
[
2009]
This chapter focuses on the nematode (roundworm) Caenorhabditis elegans as an example of the phylum Nematoda. C. elegans provides a powerful genetic system for studying glycans during embryological development and in primitive organ systems.
-
[
1987]
One way to gain an understanding of any biological process is through the use of mutant analysis and selective breeding to generate stocks which have genetic alterations in that process. We have taken just this approach in the analysis of aging...
-
[
WormBook,
2007]
Strongyloides is a genus of parasitic nematodes, which, unusually, has a free-living adult generation. Here we introduce the biology of this genus, especially the fascinating, but complex, life-cycle together with an overview of the taxonomy, morphology, genetics and genomics of this genus.
-
[
Methods Mol Biol,
2013]
Metabolomic analyses can provide valuable information about the internal metabolism of an organism; however, these studies can become quickly complicated by the large number of metabolites that are often detected. Overcoming this limitation requires high-resolution analytical separation techniques, coupled with high-power deconvolution software. Additionally, much care must be taken in metabolomic sample preparation to quench active enzymes and avoid artifactual changes in the metabolome. Here we present a relatively simple and straightforward technique, exometabolome mapping, which bypasses each of these concerns, is noninvasive, and provides a concise summary of the key metabolic processes operative in an organism. We illustrate our method using the nematode C. elegans, an organism which has been widely exploited in aging studies; however, with only minimal modification, our technique is extendible to other sample types, and indeed we have successfully used it both to perform yeast footprinting and to study the excreted metabolic end products of human kidney cancer cell lines.
-
[
WormBook,
2007]
The nematode cuticle is an extremely flexible and resilient exoskeleton that permits locomotion via attachment to muscle, confers environmental protection and allows growth by molting. It is synthesised five times, once in the embryo and subsequently at the end of each larval stage prior to molting. It is a highly structured extra-cellular matrix (ECM), composed predominantly of cross-linked collagens, additional insoluble proteins termed cuticlins, associated glycoproteins and lipids. The cuticle collagens are encoded by a large gene family that are subject to strict patterns of temporal regulation. Cuticle collagen biosynthesis involves numerous co- and post-translational modification, processing, secretion and cross-linking steps that in turn are catalysed by specific enzymes and chaperones. Mutations in individual collagen genes and their biosynthetic pathway components can result in a range of defects from abnormal morphology (dumpy and blister) to embryonic and larval death, confirming an essential role for this structure and highlighting its potential as an ECM experimental model system.
-
[
WormBook,
2005]
C. elegans has emerged as a powerful genetic model organism in which to study synaptic function. Most synaptic proteins in the C. elegans genome are highly conserved and mutants can be readily generated by forward and reverse genetics. Most C. elegans synaptic protein mutants are viable affording an opportunity to study the functional consequences in vivo. Recent advances in electrophysiological approaches permit functional analysis of mutant synapses in situ. This has contributed to an already powerful arsenal of techniques available to study synaptic function in C. elegans. This review highlights C. elegans mutants affecting specific stages of the synaptic vesicle cycle, with emphasis on studies conducted at the neuromuscular junction.
-
[
WormBook,
2007]
Heterorhabditis bacteriophora is an entomopathogenic nematode (EPN) mutually associated with the enteric bacterium, Photorhabdus luminescens, used globally for the biological control of insects. Much of the previous research concerning H. bacteriophora has dealt with applied aspects related to biological control. However, H. bacteriophora is an excellent model to investigate fundamental processes such as parasitism and mutualism in addition to its comparative value to Caenorhabditis elegans. In June 2005, H. bacteriophora was targeted by NHGRI for a high quality genome sequence. This chapter summarizes the biology of H. bacteriophora in common and distinct from C. elegans, as well as the status of the genome project.