-
Bessa C, Duarte-Silva S, Maciel P, Bessa J, Silverman RB, Miranda A, Kang S, Summavielle T, Oliveira S, da Silva Santos L, Neto MF, Esteves S, Brielmann RM, Neves-Carvalho A, Teixeira-Castro A, Oliveira P, Morimoto RI, Silva-Fernandes A, Jalles A
[
Brain,
2015]
Polyglutamine diseases are a class of dominantly inherited neurodegenerative disorders for which there is no effective treatment. Here we provide evidence that activation of serotonergic signalling is beneficial in animal models of Machado-Joseph disease. We identified citalopram, a selective serotonin reuptake inhibitor, in a small molecule screen of FDA-approved drugs that rescued neuronal dysfunction and reduced aggregation using a Caenorhabditis elegans model of mutant ataxin 3-induced neurotoxicity. MOD-5, the C. elegans orthologue of the serotonin transporter and cellular target of citalopram, and the serotonin receptors SER-1 and SER-4 were strong genetic modifiers of ataxin 3 neurotoxicity and necessary for therapeutic efficacy. Moreover, chronic treatment of CMVMJD135 mice with citalopram significantly reduced ataxin 3 neuronal inclusions and astrogliosis, rescued diminished body weight and strikingly ameliorated motor symptoms. These results suggest that small molecule modulation of serotonergic signalling represents a promising therapeutic target for Machado-Joseph disease.
-
[
Zootaxa,
2022]
Rhagovelia medinae sp. nov., of the hambletoni group (angustipes complex), and R. utria sp. nov., of the hirtipes group (robusta complex), are described, illustrated, and compared with similar congeners. Based on the examination of type specimens, six new synonymies are proposed: R. elegans Uhler, 1894 = R. pediformis Padilla-Gil, 2010, syn. nov.; R. cauca Polhemus, 1997 = R. azulita Padilla-Gil, 2009, syn. nov., R. huila Padilla-Gil, 2009, syn. nov., R. oporapa Padilla-Gil, 2009, syn. nov, R. quilichaensis Padilla-Gil, 2011, syn. nov.; and R. gaigei, Drake Hussey, 1947 = R. victoria Padilla-Gil, 2012 syn. nov. The first record from Colombia is presented for R. trailii (White, 1879), and the distributions of the following species are extended in the country: R. cali Polhemus, 1997, R. castanea Gould, 1931, R. cauca Polhemus, 1997, R. gaigei Drake Hussey, 1957, R. elegans Uhler, 1894, R. femoralis Champion, 1898, R. malkini Polhemus, 1997, R. perija Polhemus, 1997, R. sinuata Gould, 1931, R. venezuelana Polhemus, 1997, R. williamsi Gould, 1931, and R. zeteki Drake, 1953.
-
[
Nat Genet,
1994]
We have identified a novel gene containing CAG repeats and mapped it to chromosome 14q32.1, the genetic locus for Machado-Joseph disease (MJD). In normal individuals the gene contains between 13 and 36 CAG repeats, whereas most of the clinically diagnosed patients and all of the affected members of a family with the clinical and pathological diagnosis of MJD show expansion of the repeat-number (from 68-79). Southern blot analyses and genomic cloning demonstrates the existence of related genes. These results raise the possibility that similar abnormalities in related genes may give rise to diseases similar to MJD.
-
[
Int J Parasitol,
2004]
Ablations of specific amphidial neuron pairs with a laser microbeam were conducted to understand better the neurological basis of the behaviours of larval parasitic nematodes. To date, the functions of the amphidial neurons of Caenorhabditis elegans and their counterparts in parasitic nematodes have been found to be remarkably conserved allowing the possibility to predict the relationships between neurons and their functions. Therefore, we anticipated that ablation of neuron pairs ASH and ASK would abrogate avoidance of sodium dodecyl sulphate (SDS) by infective larvae (L3i) of Anclyostoma caninum. Instead, we have found that laser microbeam ablation of these neuron pairs did not eliminate SDS avoidance in A. caninum, but that neuron pairs ASH and ADL are the amphidial neurons responsible for SDS repulsion. When a droplet of the repellent is placed in the direct path of a normal A. caninum L3i, a strong backward avoidance response is triggered. However, when the ASH and ADL neurons are ablated, the nematodes demonstrate the opposite reaction, increasing their movement in a forward direction.
-
[
J Biol Chem,
1990]
The nematode Caenorhabditis elegans (C. elegans) expresses the regulatory subunit (R) of cAMP-dependent protein kinase at a level similar to the levels determined for R subunits in mammalian tissues. Approximately 60% of the C. elegans cAMP-binding protein is tightly associated with particulate structures by noncovalent interactions. Ionic detergents or 7 M urea solubilize particulate R. Solubilized and cytosolic R subunits have apparent Mr values of 52,000 and pI values of 5.5. cDNA and genomic DNA encoding a unique C. elegans R subunit were cloned and sequenced. The derived amino acid sequence contains 375 residues; carboxyl-terminal residues 145-375 are 69% identical with mammalian RI. However, residues 44-145 are markedly divergent from the corresponding regions of all other R sequences. This region might provide sufficient structural diversity to adapt a single R subunit for multiple functional roles in C. elegans. Antibodies directed against two epitopes in the deduced amino acid sequence of C. elegans R avidly bound nematode cytosolic and particulate R subunits on Western blots and precipitated dissociated R subunits and R2C2 complexes from solution. Immunofluorescence analysis revealed that the tip of the head, which contains chemosensory and mechanosensory neurons, and the pharyngeal nerve ring were enriched in R. The R subunit concentration is low during early embryogenesis in C. elegans. A sharp increase (approximately 6-fold) in R content begins several hours before the nematodes hatch and peaks during the first larval stage. Developmental regulation of R expression occurs at translational and/or post-translational levels. The 8-kilobase pair C. elegans R gene is divided into 8 exons by introns ranging from 46 to 4300 base pairs. The 5'-flanking region has no TATA box and contains preferred and minor transcription start sites.
-
[
FASEB J,
2007]
Machado-Joseph disease (MJD) is the most common dominant spinocerebellar ataxia. MJD is caused by a CAG trinucleotide expansion in the ATXN3 gene, which encodes a protein named ataxin-3. Ataxin-3 has been proposed to act as a deubiquitinating enzyme in the ubiquitin-proteasome pathway and to be involved in transcriptional repression; nevertheless, its precise biological function(s) remains unknown. To gain further insight into the function of ataxin-3, we have identified the Caenorhabditis elegans orthologue of the ATXN3 gene and characterized its pattern of expression, developmental regulation, and subcellular localization. We demonstrate that, analogous to its human orthologue, C. elegans ataxin-3 has deubiquitinating activity in vitro against polyubiquitin chains with four or more ubiquitins, the minimum ubiquitin length for proteasomal targeting. To further evaluate C. elegans ataxin-3, we characterized the first known knockout animal models both phenotypically and biochemically, and found that the two C. elegans strains were viable and displayed no gross phenotype. To identify a molecular phenotype, we performed a large-scale microarray analysis of gene expression in both knockout strains. The data revealed a significant deregulation of core sets of genes involved in the ubiquitin-proteasome pathway, structure/motility, and signal transduction. This gene identification provides important clues that can help elucidate the specific biological role of ataxin-3 and unveil some of the physiological effects caused by its absence or diminished function.--Rodrigues, A-J., Coppola, G., Santos, C., do Carmo Costa, M., Ailion, M., Sequeiros, J., Geschwind, D. H., Maciel, P. Functional genomics and biochemical characterization of the C. elegans orthologue of the Machado-Joseph disease protein ataxin-3.
-
[
Nat Commun,
2021]
R-bodies are long, extendable protein polymers formed in the cytoplasm of some bacteria; they are best known for their role in killing of paramecia by bacterial endosymbionts. Pseudomonas aeruginosa PA14, an opportunistic pathogen of diverse hosts, contains genes (referred to as the reb cluster) with potential to confer production of R-bodies and that have been implicated in virulence. Here, we show that products of the PA14 reb cluster associate with R-bodies and control stochastic expression of R-body structural genes.PA14 expresses reb genes during colonization of plant and nematode hosts, and R-body production is required for full virulence in nematodes. Analyses of nematode ribosome content and immune response indicate that P. aeruginosa R-bodies act via a mechanism involving ribosome cleavage and translational inhibition. Our observations provide insight into the biology of R-body production and its consequences during P. aeruginosa infection.
-
[
Dev Biol,
2024]
While the nervous system of bilaterian animals is mainly left-right (L-R) symmetric at the anatomical level, some molecular and functional L-R asymmetries exist. However, the extent of these molecular asymmetries and their functional consequences remain poorly characterized. C. elegans allows to study L-R asymmetries in the nervous system with single-neuron resolution. We have previously shown that a neural bHLH transcription factor, HLH-16/Olig, is L-R asymmetrically expressed in the AIY neuron lineage and regulates AIY axon projections in a L-R asymmetric manner. Here, by combining a candidate approach and single-cell RNA sequencing data analysis, we identify the ephrin protein EFN-2 and the Flamingo protein FMI-1 as downstream targets of HLH-16 that are L-R asymmetrically expressed in the AIY lineage. We show that EFN-2 and FMI-1 collaborate in the L-R asymmetric regulation of axonal growth. EFN-2 may act via a non-canonical receptor of the L1CAM family, SAX-7. Our study reveals novel molecular L-R asymmetries in the C. elegans nervous system and their functional consequences.
-
[
Commun Integr Biol,
2011]
The development of bilateral symmetry during the evolution of species probably 600 million years ago brought about several important innovations: It fostered efficient locomotion, streamlining and favored the development of a central nervous system through cephalization. However, to increase their functional capacities, many organisms exhibit chirality by breaking their superficial left-right (l-r) symmetry, which manifests in the lateralization of the nervous system or the l-r asymmetry of internal organs. In most bilateria, the mechanisms that maintain consistent l-r asymmetry throughout development are poorly understood. This review highlights insights into mechanisms that couple early embryonic l-r symmetry breaking to subsequent l-r patterning in the roundworm Caenorhabditis elegans. A recently identified strategy for l-r patterning in the early C. elegans embryo is discussed, the spatial separation of midline and anteroposterior axis, which relies on a rotational cellular rearrangement and non-canonical Wnt signaling. Evidence for a general relevance of rotational/torsional rearrangements during organismal l-r patterning and for non-canonical Wnt signaling/planar cell polarity as a common signaling mechanism to maintain l-r asymmetry is presented.
-
[
MicroPubl Biol,
2024]
Inhibition of acetylcholinesterase (AChE) is a common used treatment option for Alzheimer's disease. However, there has been limited research on the potential use of AChE inhibitors for the treatment of Machado-Joseph disease (MJD)/Spinocerebellar Ataxia 3 (SCA3), in spite of the positive results using AChE inhibitors in patients with other inherited ataxias. MJD/SCA3, the most common form of dominant Spinocerebellar Ataxia worldwide, is caused by an expansion of the polyglutamine tract within the ataxin-3 protein, and is characterized by motor impairments. Our study shows that administration of the AChE inhibitor neostigmine is beneficial in treating the locomotion defective phenotype of a SCA3/MJD model of <i>C. elegans</i> and highlights the potential contribution of AChE enzymes to mutant ataxin-3-mediated toxicity.