[
1987]
Since the last review in this series [Johnson, 1985], many papers have appeared dealing directly with the aging process in both Caenorhabditis elegans and Turbatrix aceti. We will review this work and also briefly review other areas of C. elegans research that may impact on the study of aging. C. elegans has become a major biological model; four "News" articles in Science [Lewin, 1984a,b; Marx, 1984a,b] and inclusion as one of three developmental genetics models in a recent text [Wilkins, 1986] indicate its importance. Recent work has verified earlier results and has advanced progress toward new goals, such as routine molecular cloning. The aging studies reviewed here, together with new findings from other areas of C. elegans research, lay the groundwork for rapid advances in our understanding of aging in nematodes. Several areas of research in C. elegans have been reviewed recently: the genetic approach to understanding the cell lineage [Sternberg and Horvitz, 1984] and a brief summary of cell lineage mutants [Hedgecock, 1985]. The specification of neuronal development and neural connectivity has been a continuing theme in C. elegans research and reviews of these areas have also appeared [Chalfie, 1984; White, 1985]. A major genetic advance is the development of reliable, if not routine, mosaic analysis [Herman, 1984; Herman and Kari, 1985], which is useful for the genetic analysis of tissue-limited gene expression. Hodgkin [1985] reviews studies on a series of mutants involved in the specification of sex. These include her mutations that cause XO worms (normally males) to develop as hermaphrodites and tra mutations that change XX hermaphrodites into phenotypic males. The work on the structure and development of nematode muscle has been summarized by Waterston and Francis [1985]. A comprehensive review of aging research, containing useful reference material on potential biomarkers, has appeared [Johnson and Simpson, 1985], as well as a review including
[
WormBook,
2005]
The use of Wnt ligands for signaling between cells is a conserved feature of metazoan development. Activation of Wnt signal transduction pathways upon ligand binding can regulate diverse processes including cell proliferation, migration, polarity, differentiation and axon outgrowth. A ''canonical'' Wnt signaling pathway has been elucidated in vertebrate and invertebrate model systems. In the canonical pathway, Wnt binding leads to the stabilization of the transcription factor beta-catenin, which enters the nucleus to regulate Wnt pathway target genes. However, Wnt binding also acts through beta-catenin-independent, noncanonical pathways, such as the planar cell polarity (PCP) pathway and a pathway involving Ca 2+ signaling. This chapter examines our current understanding of Wnt signaling and Wnt-mediated processes in the nematode C. elegans. Like other species, the C. elegans genome encodes multiple genes for Wnt ligands (five) and Wnt receptors (four frizzleds, one Ryk/Derailed). Unlike vertebrates or Drosophila, the C. elegans genome encodes three beta-catenin genes, which appear to have distinct functions in Wnt signaling and cell adhesion. Canonical Wnt signaling clearly exists in C. elegans, utilizing the beta-catenin BAR-1 . However, a noncanonical pathway utilizing the beta-catenin WRM-1 also exists, and to date a similar pathway has not been described in other species. Evidence for beta-catenin independent noncanonical Wnt signaling is currently limited. The role of Wnt signaling in over a dozen C. elegans developmental processes, including the regulation of cell fate, polarity and migration, is described.