[
Exp Gerontol,
2006]
In Caenorhabditis elegans, the insulin/IGF-1 signaling pathway controls many biological processes such as life span, fat storage, dauer diapause, reproduction and stress response . This pathway is comprised of many genes including the insulin/IGF-1 receptor (DAF-2) that signals through a conserved PI 3-kinase/AKT pathway and ultimately down-regulates DAF-16, a forkhead transcription factor (FOXO). DAF-16 also receives input from several other pathways that regulate life span such as the germline and the JNK pathway [Hsin, H., Kenyon, C., 1999. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362-366; Oh, S.W., Mukhopadhyay, A., Svrzikapa, N., Jiang, F., Davis, R.J., Tissenbaum, H.A., 2005. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl. Acad. Sci. USA 102, 4494-4499]. Therefore, DAF-16 integrates signals from multiple pathways and regulates its downstream target genes to control diverse processes. Here, we discuss the signals to and from DAF-16, with a focus on life span regulation.
[
Philos Trans R Soc Lond B Biol Sci,
2018]
Control is essential to the functioning of any neural system. Indeed, under healthy conditions the brain must be able to continuously maintain a tight functional control between the system's inputs and outputs. One may therefore hypothesize that the brain's wiring is predetermined by the need to maintain control across multiple scales, maintaining the stability of key internal variables, and producing behaviour in response to environmental cues. Recent advances in network control have offered a powerful mathematical framework to explore the structure-function relationship in complex biological, social and technological networks, and are beginning to yield important and precise insights on neuronal systems. The network control paradigm promises a predictive, quantitative framework to unite the distinct datasets necessary to fully describe a nervous system, and provide mechanistic explanations for the observed structure and function relationships. Here, we provide a thorough review of the network control framework as applied to <i>Caenorhabditis elegans</i> (Yan <i>et al.</i> 2017 <i>Nature</i><b>550</b>, 519-523. (doi:10.1038/nature24056)), in the style of Frequently Asked Questions. We present the theoretical, computational and experimental aspects of network control, and discuss its current capabilities and limitations, together with the next likely advances and improvements. We further present the Python code to enable exploration of control principles in a manner specific to this prototypical organism.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling <i>C. elegans</i> at cellular resolution'.