-
[
Cell Metab,
2005]
In C. elegans, dauer pheromone is an indicator of population density and influences pathways that regulate metabolism, development, and aging. In a recent publication in Nature, Paik and coworkers (Jeong et al., 2005) show the purified substance to be a pyran ring conjugated to heptanoic acid, setting the stage for dissecting downstream signaling pathways.
-
[
Int J Biochem Cell Biol,
2003]
Kallmann's syndrome (KS) is a genetic condition characterised by hypogonadotrophic hypogonadism (HH) and anosmia; although these are the defining features of the condition, additional neurological and non-neurological sequel may also occur depending on the specific mode of inheritance. KS affects about 1 in 8000 males and 1 in 40,000 females, with most presentations being of the 'sporadic' type. Of the inherited forms, hitherto, only the gene responsible for the X-linked form (X-KS), namely KAL-1, has been identified and the encoded protein, anosmin-1, consists primarily of a whey acidic protein (WAP) and fibronectin-like type III (FnIII) domains which appear to mediate distinctly different protein functions. The WAP/FnIII combination is conserved in anosmins across species and recent studies in rodents and in Caenorhabditis elegans demonstrate that anosmin functions in both axonal targeting and branching. Screening for loci that modify these phenotypes in C. elegans has identified heparan-6-O-sulpbotransferase as a key interactor mediating anosmin-1 function. Furthermore, over-expression and loss of function of the C elegans Kal-1 gene disrupt epidermal morphogenesis, resulting in ventral enclosure and male tail formation defects. These findings provide novel insights into the molecular pathogenesis of X-KS.
-
[
Neuron,
2002]
Three new studies into the function of human anosmin-1 and related proteins in C. elegans and rodents show that these influence axon branching and axon targeting. The rodent anosmin appears to work at two stages of development, initially promoting axon outgrowth from the olfactory bulb and then stimulating branching from axons into the olfactory cortex. CeKal-1 further influences morphogenesis, and, as the human and nematode anosmins are functionally conserved, these studies provide insights into the pathogenesis of Kallmann syndrome (KS).
-
[
J Biochem Mol Biol,
2004]
Since the completion of the genome project of the nematode C. elegans in 1998, functional genomic approaches have been applied to elucidate the gene and protein networks in this model organism. The recent completion of the whole genome of C. briggsae, a close sister species of C. elegans, now makes it possible to employ the comparative genomic approaches for identifying regulatory mechanisms that are conserved in these species and to make more precise annotation of the predicted genes. RNA interference (RNAi) screenings in C. elegans have been performed to screen the whole genome for the genes whose mutations give rise to specific phenotypes of interest. RNAi screens can also be used to identify genes that act genetically together with a gene of interest. Microarray experiments have been very useful in identifying genes that exhibit co-regulated expression profiles in given genetic or environmental conditions. Proteomic approaches also can be applied to the nematode, just as in other species whose genomes are known. With all these functional genomic tools, genetics will still remain an important tool for gene function studies in the post genome era. New breakthroughs in C. elegans biology, such as establishing a feasible gene knockout method, immortalized cells lines, or identifying viruses that can be used as vectors for introducing exogenous gene constructs into the worms, will augment the usage of this small organism for genome-wide biology.