-
[
Eur J Cell Biol,
2003]
HCF-1 (host cell factor 1) is a human protein originally identified as a component of the VP16 transcription complex. A related protein HCF-2 is also present in humans and while at least HCF-1 appears to be required for normal cell growth there is currently little information on the precise cellular role(s) of these proteins. C. elegans contains a single HCF orthologue (CeHCF) which is very closely related to human HCF-2. To contribute to an understanding of the activities of these proteins here we analyse the subcellular localisation of the CeHCF protein in live transgenic worms and in mammalian cells. We constructed a green fluorescent protein (GFP) fusion of CeHCF and studied localisation after ectopic expression under the control of a heat shock protein promoter. The CeHCF-GFP protein accumulated in the cell nuclei at every stage of development and in a wide variety of cell types. Nuclear accumulation with nucleolar sparing was evident on the larvae and adult stages, but not earlier in development in which the protein accumulated diffusely in the nucleoplasm. Surprisingly the same protein accumulated in the mitochondria of a stable HeLa cell lines suggesting a differential localisation of CeHCF in mammalian cells. Furthermore, when overexpressed in transient transfection the CeHCF accumulated in both nuclear and mitochondrial compartments. We have refined the targeting determinants of CeHCF to the last 23 amino acids at the extreme C-terminus and show that they contain interdigitated amino acids involved in both nuclear and mitochondrial targeting. This novel targeting signal is sufficient to redirect HCF-2 into mitochondria. It can also be transferred to an unrelated protein, resulting in its targeting to both the mitochondrial and nuclear compartments.
-
[
Biochemistry,
2005]
The human cellular factor (HCF) is a multidomain protein that is implicated in processes of cell cycle progression, and it is recruited into a multicomponent assembly that triggers the expression of the herpes simplex virus genome. The amino-terminal domain of HCF has been proposed to form a "kelch" type beta-propeller fold, and the carboxy-terminal domain contains a repeat of a fibronectin-like motif. We describe the expression, purification, and characterization of the domains from the human HCF and of the full-length HCF from Caenorhabditis elegans. The purified recombinant C. elegans HCF can substitute for the human HCF in efficiently forming a multiprotein complex on a herpes simplex virus promoter element. As noted in earlier studies, a segment of human HCF encompassing the human kelch domain forms a stable complex on a viral promoter element. The purified fibronectin domain can also be recruited into this complex, but not into the stable complex formed with the minimal kelch domain. These results suggest that the fibronectin domain can interact with HCF in the transcriptional activating complex and that the association requires a region outside the putative beta-propeller.
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Worm Breeder's Gazette,
2003]
Wormgenes is a new resource for C.elegans offering a detailed summary about each gene and a powerful query system.
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
[
International Journal of Developmental Biology,
1998]
Pleiotropy , a situation in which a single gene influences multiple phenotypic tra its, can arise in a variety of ways. This paper discusses possible underlying mechanisms and proposes a classification of the various phenomena involved.
-
[
Curr Biol,
2011]
Recent work on a Caenorhabditis elegans transmembrane ATPase reveals a central role for the aminophospholipid phosphatidylethanolamine in the production of a class of extracellular vesicles.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.
-
[
J Antibiot (Tokyo),
1990]
Cochlioquinone A, isolated from the fungus Helminthosporium sativum, was found to have nematocidal activity. Cochlioquinone A is a competitive inhibitor of specific [3H]ivermectin binding suggesting that cochlioquinone A and ivermectin interact with the same membrane receptor.
-
[
J Lab Autom,
2016]
Microfluidic devices offer new technical possibilities for a precise manipulation of Caenorhabditis elegans due to the comparable length scale. C. elegans is a small, free-living nematode worm that is a popular model system for genetic, genomic, and high-throughput experimental studies of animal development and neurobiology. In this paper, we demonstrate a microfluidic system in polydimethylsiloxane (PDMS) for dispensing of a single C. elegans worm into a 96-well plate. It consists of two PDMS layers, a flow and a control layer. Using five microfluidic pneumatic valves in the control layer, a single worm is trapped upon optical detection with a pair of optical fibers integrated perpendicular to the constriction channel and then dispensed into a microplate well with a dispensing tip attached to a robotic handling system. Due to its simple design and facile fabrication, we expect that our microfluidic chip can be expanded to a multiplexed dispensation system of C. elegans worms for high-throughput drug screening.