[
1987]
We describe an experimental system in which to study gene-specific segregation mechanisms during early development of C. elegans. A non-specific esterase, of unknown physiological function, has convenient properties as a biochemical marker of differentiation: expression is localized to the gut lineage, is due to transcription during zygotic development and is lineage autonomous. The timing of esterase expression does not depend either on the normal number of rounds of cytokinesis or on the normal number of rounds of DNA replication; thus some other clock mechanism must be invoked. We descrbe experiments suggesting that DNA strands donated by the sperm do not co-segregate during development of the next generation.
[
1987]
We describe the use of a nonspecific carboxylesterase as a biochemical marker for intestinal differentiation in the nematode C. elegans. In particular, we describe how esterase expression responds to inhibition of embryonic DNA synthesis by aphidicolin. Esterase expression requires a short period of DNA synthesis immediattely after the gut lineage is clonally established. However, the subsequent 2-3 rounds of DNA synthesis, which normally occur before esterase gene transcription, can be inhibited without effect. Thus esterase expression depends neither on reaching the normal DNA:cytoplasmic ration nor on counting the normal number of replication rounds.
[
2000]
Computer tracking of Caenorhabditis elegans, a free-living soil nematode, is a promising tool to assess behavioral changes upon exposure to contaminants. A short life cycle, a known genetic make-up, thoroughly studied behavior, and a completely mapped nervous system make C. elegans an attractive soil test organism with many advantages over the commonly used earthworm. Although many toxicity tests have been performed with C. elegans, the majority focused on mortality, a much less sensitive endpoint than behavior. A computer tracking system has been developed to monitor behavioral changes using C. elegans. Because conditions unrelated to specific toxicant exposures, such as changes in temperature, developmental stage, and presence of adequate food sources, can affect behavior, there is a need to standardize tracking procedures. To this end, we have developed reference charts for control movement comparing the movement of four and five day-old adult nematodes. The use of K-medium versus deionized (DI) H2O for pre-tracking rinses was also investigated. A final reference chart compared the behavioral responses of nematodes at various food densities (i.e. bacterial concentrations).