[
Nat Rev Immunol,
2010]
The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in identifying the host response pathways that are involved in its defence against infection. Strikingly, C. elegans seems to detect, and respond to, infection without the involvement of its homologue of Toll-like receptors, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans and what can they tell us about innate immunity in higher organisms?
[
Clin Exp Immunol,
2010]
The molecular mechanisms involved in host-microbe interactions during the initial stages of infection are poorly understood. The bacteria-eating nematode Caenorhabditis elegans provides an opportunity to dissect host-microbe interactions in the context of the whole organism, using powerful genomic, genetic and cell-biological tools. Because of the evolutionary conservation of ancient innate host defences and bacterial virulence mechanisms, studies in C. elegans hold great promise to shed light on defences in higher organisms, including mammals. Additionally, C. elegans pathogenesis models provide a platform for the identification of novel classes of anti-infective compounds with therapeutic value.