-
[
Ecol Dis,
1983]
Medical records concerning filarial diseases in Ceylon date from the account of Davy[1], though there are hints as to the more obvious manifestations in the old chronicles of the country, too. A first survey was conducted in 1912/1913 concentrating on urban areas, followed by a second survey in the 1930s with emphasis on the rural parts. The results displayed a remarkable distribution pattern: Wuchereria bancrofti, the so-called "urban type", concentrated in Galle and Matara towns, whereas Brugia malayi, the "rural type", widespread along the southwest coast from Matara to Negombo, plus isolated pockets in the northwest, central north, east and south. The survey of the 1930s lead to the supposition that the occurrence of B. malayi must have something to do with the distribution of certain water plants, a suspicion later on confirmed in that Pistia stratiotes in particular--but other water plants as well--are essential for the survival of the vector (Taeniorhynchus (Mansonia) uniformis) during its early (submersed) stages of development. A determined effort to remove the water plants from tanks etc. reduced the rural type with encouraging results. At the same time, a combination of factors, in particular the war-time sojourn of masses of troops from Africa, already infected by filarial diseases, in the southwestern coastal areas triggered off an unexpected spread of the urban type out of its early "bridge-heads" in Galle and Matara towns to invade the southwest coastal areas, and, later on, supported by increased population mobility, to advance further inland too. At present, there is no remedy within sight to give some hope to come to grips with this problem as the vector, Culex pipiens fatigans, is ubiquitous and finds suitable breeding grounds practically everywhere. Research into the history of filarial diseases in Ceylon points as far as B. malayi is concerned, to an invasion by a Malayan army under the Kalinga kings during the days of close relations between Ceylon and southeast Asia, i.e. during the 12th and 13th centuries, and as far as W. bancrofti is concerned, a Chinese army, invading the southern coast in the early 15th century, is made responsible. Filarial diseases in Ceylon present a particular interesting case of geomedical research; but inspite of encouraging results in fighting the rural type, i.e. B. malayi, the urban type, W. bancrofti, seems to remain a problem of public health in the island for the forseeable future.
-
[
Genetics,
1989]
Just over 21 years ago, in October of 1967, Sydney Brenner soaked a culture of hermaphroditic nematodes of the species Caenorhabditis elegans in a solution of ethyl methane sulfonate. A week later, examining their F2 descendants, he noticed a short, "dumpy" animal among the long, thin wild-type worms. The dumpy animal was picked to a separate culture plate and allowed to produce self-progeny, which were also dumpy: it was a true-breeding mutant. The new strain was given the name E1. Crosses with the parental wild-type strain showed that the mutant phenotype was due to a single autosomal recessive mutation - in modern nomenclature, allele
e1 of the gene
dpy-1.
-
[
Neuron,
2024]
In an interview with Neuron, Cori Bargmann discusses C.&#
xa0;elegans as a model organism, the importance of considering the animal's own world (thinking like a worm), choosing a scientific problem, and her experience as head of science at the Chan Zuckerberg Initiative and co-chair of the BRAIN Initiative.
-
[
Clin Med,
2003]
The recent award of a Nobel Prize to Sydney Brenner crowns an astonishingly distinguished scientific career. He must have come very close to winning it several times in the past. A colleague described him as 'a visionary who sees further into the future than anyone'. This is borne out by his decision - made 40 years ago - to study a one-millimetre long worm in detail to define the, biochemical and genetic control of its development and differentiation. The impact of these studies has been so profound, with a significant bearing on human physiology and disease, that over 400 laboratories worldwide have now adopted the worm as a research tool. In this article, a brief outline is given of his work on the worm and of some of the highlights of his brilliant career.
-
[
Int J Dev Biol,
2000]
1969 was a landmark year. But for me it was not Neil Armstrong's giant leap or Woodstock heralding the beginning of the end of the sixties that sticks in my mind. It was a visit I made to Cambridge to meet a "bloke who is starting a new project to study some sort of worm", as my head of department at the Medical Research Council's National Institute of Medical Research informed me...
-
[
Carbohydr Res,
2016]
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
-
[
Science,
2002]
The nematode worm known as Caenorhabditis elegans is not much to look at. Just a millimeter long and transparent to boot, it is almost invisible to the naked eye. But in biological research the tiny worm looms large, providing a model system for studying everything from embryonic development to aging. Now, three researchers who pioneered the use of C. elegans as a model organism have won the Nobel Prize in Physiology or Medicine.
-
[
Genetics,
2015]
Ellsworth Dougherty (1921-1965) was a man of impressive intellectual dimensions and interests; in a relatively short career he contributed enormously as researcher and scholar to the biological knowledge base for selection of Caenorhabditis elegans as a model organism in neurobiology, genetics, and molecular biology. He helped guide the choice of strains that were eventually used, and, in particular, he developed the methodology and understanding for the nutrition and axenic culture of nematodes and other organisms. Dougherty insisted upon a concise terminology for culture techniques and coined descriptive neologisms that were justified by their linguistic roots. Among other contributions, he refined the classification system for the Protista.
-
Gradolewski D, Krawczuk M, Tojza P, Koncicki A, Ambroziak D, Redlarski G, Lewczuk B, Jakubiuk K, Jaworski J, Skarbek L, Piechocki J, Zak A
[
Biomed Res Int,
2015]
Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis.
-
[
Toxicon,
2001]
Diphtheria toxin is one of the most extensively studied and well understood bacterial toxins. Ever since its discovery in the late 1800's this toxin has occupied a central focus in the field of toxinology. In this review, I present a chronology of major discoveries that led to our current understanding of the structure and activity of diphtheria toxin.