-
[
Dev Cell,
2006]
The protein kinase Aurora-A is required for centrosome maturation, spindle assembly, and asymmetric protein localization during mitosis. Here, we describe the identification of Bora, a conserved protein that is required for the activation of Aurora-A at the onset of mitosis. In the Drosophila peripheral nervous system, bora mutants have defects during asymmetric cell division identical to those observed in aurora-A. Furthermore, overexpression of bora can rescue defects caused by mutations in aurora-A. Bora is conserved in vertebrates, and both Drosophila and human Bora can bind to Aurora-A and activate the kinase in vitro. In interphase cells, Bora is a nuclear protein, but upon entry into mitosis, Bora is excluded from the nucleus and translocates into the cytoplasm in a Cdc2-dependent manner. We propose a model in which activation of Cdc2 initiates the release of Bora into the cytoplasm where it can bind and activate Aurora-A.
-
[
Methods Mol Biol,
2006]
The identification and cloning of the green fluorescent protein (GFP) from jellyfish marks the beginning of a new era of fluorescent reporters. In Caenorhabditis elegans, genetically encoded markers like the fluorescent proteins of the GFP family became the reporter of choice for gene expression studies and protein localization. The small size and transparency of the worm allows the visualization of in vivo dynamics, which increases the number of potential applications for fluorescent reporters tremendously. In combination with subcellular tags, GFP can be used to label subcellular structures like synapses allowing novel approaches to study developmental processes like synapse formation. Other fluorescent labels like small organic dyes, which are in widespread use in cell culture systems, are rarely used in C. elegans owing to difficulties in applying these labels through the impenetrable cuticle or eggshell of the animal. A notable exception is the use of lipophilic dyes, which are taken up by certain sensory neurons in the intact animal and can be introduced into the embryo after puncturing of the egg shell. This chapter covers the use of fluorescent dyes and fluorescent proteins in C. elegans. Emphasis is placed on microscopic techniques including wide field and confocal microscopy as well as time-lapse recordings. The use of fluorescent proteins as transgenic markers and image processing of fluorescence images are briefly discussed.
-
[
Methods Cell Biol,
2012]
Fluorescent proteins such as the "green fluorescent protein" (GFP) are popular tools in Caenorhabditis elegans, because as genetically encoded markers they are easy to introduce. Furthermore, they can be used in a living animal without the need for extensive sample preparation, because C. elegans is transparent and small enough so that entire animals can be imaged directly. Consequently, fluorescent proteins have emerged as the method of choice to study gene expression in C. elegans and reporter constructs for thousands of genes are currently available. When fused to a protein of interest, fluorescent proteins allow the imaging of its subcellular localization in vivo, offering a powerful alternative to antibody staining techniques. Fluorescent proteins can be employed to label cellular and subcellular structures and as indicators for cell physiological parameters like calcium concentration. Genetic screens relying on fluorescent proteins to visualize anatomical structures and recent progress in automation techniques have tremendously expanded their potential uses. This chapter presents tools and techniques related to the use of fluorescent proteins, discusses their advantages and shortcomings, and provides practical considerations for various applications.
-
[
European Worm Meeting,
2002]
The ventral cord is the major longitudinal axon tract in C. elegans containing essential components of the motor circuit. It consists of two bundles running on either side of the ventral midline. Most axons enter the ventral cord after exiting the nerve ring in the head of the animal. Essentially all axons cross over to the right side near the retrovesicular ganglion leading to a highly asymmetrical ventral cord. Motorneuron axons originating from cell bodies at the ventral midline also exclusively grow in the right axon tract. The arrangement of processes within the cord is highly invariant implying that there is a precise navigational system guiding axons not just to the cord but also within the cord. The order of outgrowth of axons in the ventral cord during embryonic development has been studied by Richard Durbin1, who also initiated a first analysis on the pioneering function of certain early outgrowing axons. A number of genes are now known to affect guidance of axons in the ventral cord. The importance of particular guidance cues and pioneers for the navigation of individual classes of axons in the ventral cord can now be studied more systematically, since it is possible to visualize all major groups of ventral cord axons at the light microscopic level with GFP markers. To analyse pioneer-follower relationships several strains were made which express color variants of GFP in different groups of axons. The importance of pioneers like AVG was tested in laser ablation experiments. It was found that interneurons (
glr-1 expressing) and D-type motorneurons are highly dependant on the pioneer AVG, whereas DA/DB motorneurons are almost not affected in the absence of AVG. Navigational mistakes are made individually. Errors of early outgrowing axons (DD) typically do not lead to mistakes of later outgrowing axons. Order of outgrowth apparently does not always reflect a pioneer-follower relationship. Similar observations were made in the absence of guidance cues like UNC-6. AVG and UNC-6 appear to be the main sources of navigational information for D-type motorneuron axons, but not so much for DA/DB motorneuron or interneuron axons indicating that different classes of neurons with axons in the ventral cord use different navigational cues. This analysis is currently extended to include other guidance cues and to test for redundancy among early outgrowing axons for the guidance of later outgrowing ones.
-
[
Microsc Res Tech,
2000]
In the nematode Caenorhabditis elegans, a well-established model organism for the analysis of nervous system development and function, nerve processes can be labelled in the intact animal with markers based on the "Green Fluorescent Protein" (GFP). The generation of GFP variants with improved brightness and modified emission spectra potentiated the use of this marker for in vivo labelling of subcellular structures. This made it possible to label different groups of neurons and their axons in the same animal with GFP variants of different spectral characteristics. Here I show with double labelling experiments that spatial relationships of axons in small axon bundles can now be resolved at the light microscopic level. In the future this will largely circumvent the need for time-consuming electron microscopic reconstructions to detect local defects in axon outgrowth. Furthermore, I demonstrate that neuronal processes can now be traced even in the head ganglia, an area of the nervous system that was previously almost inaccessible for analysis due to the compact arrangement of cell bodies and axons.
-
[
J Microsc,
2004]
In the last few years variants of the 'green fluorescent protein' (GFP) with different spectral properties have been generated. This has greatly increased the number of possible applications for these fluorochromes in cell biology. The significant overlap of the excitation and emission spectra of the different GFP variants imposes constraints on the number of variants that can be used simultaneously in a single sample. In particular, the two brightest variants, GFP and YFP, are difficult to separate spectrally. This study shows that GFP and YFP can be readily separated with little spectral overlap (cross-talk) with the use of a confocal microscope equipped with an acusto-optical beam splitter and freely adjustable emission windows. Under optimal recording conditions cross-talk is less than 10%. Together with two other fluorescent proteins and the lipophilic dye DiD, a total of five different colours can now be used simultaneously to label in vivo distinct anatomical structures such as neurons and their processes. Spatial resolution of the confocal microscope is sufficient to resolve the relative position of labelled axons within a single axon bundle. The use of five distinct marker dyes allows the in vivo analysis of the Caenorhabditis elegans nervous system at unprecedented resolution and richness in detail at the light microscopic
-
[
Semin Cell Dev Biol,
2017]
The small number of neurons and the simple architecture of the Caenorhabditis elegans (C. elegans) nervous system enables researchers to study axonal pathfinding at the level of individually identified axons. Axons in C. elegans extend predominantly along one of the two major body axes, the anterior-posterior axis and the dorso-ventral axis. This review will focus on axon navigation along the anterior-posterior axis, leading to the establishment of the longitudinal axon tracts, with a focus on the largest longitudinal axon tract, the ventral nerve cord (VNC). In the VNC, axons grow out in a stereotypic order, with early outgrowing axons (pioneers) playing an important role in guiding later outgrowing (follower) axons. Genetic screens have identified a number of genes specifically affecting the formation of longitudinal axon tracts. These genes include secreted proteins, putative receptors and adhesion molecules, as well as intracellular proteins regulating the cell's response to guidance cues. In contrast to dorso-ventral navigation, no major general guidance cues required for the establishment of longitudinal pathways have been identified so far. The limited penetrance of defects found in many mutants affecting longitudinal navigation suggests that guidance cues act redundantly in this process. The majority of the axon guidance genes identified in C. elegans are evolutionary conserved, i.e. have homologs in other animals, including vertebrates. For a number of these genes, a role in axon guidance has not been described outside C. elegans. Taken together, studies in C. elegans contribute to a fundamental understanding of the molecular basis of axonal navigation that can be extended to other animals, including vertebrates and probably humans as well.
-
Proenca RB, Zhu X, Guo C-B, Plenefisch JD, Spieth J, Hedgecock EM, Norris CR, Scheel JK, Mastwal SS, Vogel BE, Hutter H
[
Science,
2000]
New proteins and modules have been invented throughout evolution. Gene "birth dates" in Caenorhabditis elegans range from the origins of cellular life through adaptation to a soil habitat. Possibly half are "metazoan" genes, having arisen sometime between the yeast-metazoan and nematode-chordate separations. These include basement membrane and cell adhesion molecules implicated in tissue organization. By contrast, epithelial surfaces facing the environment have specialized components invented within the nematode lineage. Moreover, interstitial matrices were likely elaborated within the vertebrate lineage. A strategy for concerted evolution of new gene families, as well as conservation of adaptive genes, may underlie the differences between heterochromatin and euchromatin.
-
[
Mol Biol Cell,
2015]
A clear definition of what constitutes "Big Data" is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of "complete" data sets for this organism is actually rather small-not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein-protein interaction-important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell.