[
J Chromatogr B Analyt Technol Biomed Life Sci,
2003]
Whole genome sequencing of the free-living nematode Caenorhabditis elegans is a prominent achievement in genomics and uncovers the existence of enormous known and unknown gene products. Characterization and linking of all gene products are the next challenging theme of biology. Genome-wide researches are already progressing on C. elegans and the fruits of these efforts are accessible through the internet. To link the sequence-function relationship, proteomic research has been applied to provide comprehensive information of the worm proteins. In addition to 2-dimensional gel electrophoresis for visualization of the proteome, recent advances in liquid chromatography (LC)-based technologies have allowed the large-scale analysis of proteins and are at cutting-edge of high-throughput analysis of focused proteome.
[
Metabolites,
2021]
Metabolomics and lipidomics recently gained interest in the model organism <i>Caenorhabditis elegans</i> (<i>C. elegans</i>). The fast development, easy cultivation and existing forward and reverse genetic tools make the small nematode an ideal organism for metabolic investigations in development, aging, different disease models, infection, or toxicology research. The conducted type of analysis is strongly depending on the biological question and requires different analytical approaches. Metabolomic analyses in <i>C. elegans</i> have been performed using nuclear magnetic resonance (NMR) spectroscopy, direct infusion mass spectrometry (DI-MS), gas-chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) or combinations of them. In this review we provide general information on the employed techniques and their advantages and disadvantages in regard to <i>C. elegans</i> metabolomics. Additionally, we reviewed different fields of application, e.g., longevity, starvation, aging, development or metabolism of secondary metabolites such as ascarosides or maradolipids. We also summarised applied bioinformatic tools that recently have been used for the evaluation of metabolomics or lipidomics data from <i>C. elegans</i>. Lastly, we curated metabolites and lipids from the reviewed literature, enabling a prototypic collection which serves as basis for a future <i>C. elegans</i> specific metabolome database.
[
Parasitol Res,
2018]
Onchocerciasis is a filarial vector borne disease which affects several million people mostly in Africa. The therapeutic approach of its control was based on a succession of drugs which always showed limits. The last one: ivermectin is not the least. It was shown to be only microfilaricidal and induced resistance to the human parasite Onchocerca volvulus. The approach using medicinal plants used in traditional medicine is a possible alternative method to cure onchocerciasis. Onchocerca ochengi and Onchocerca gutturosa are the parasite models used to assess anthelmintic activity of potentially anthelmintic plants. Numerous studies assessed the in vitro and/or in vivo anthelmintic activity of medicinal plants. Online electronic databases were consulted to gather publications on in vitro and in vivo studies of anti-Onchocerca activity of plants from 1990 to 2017. Globally, 13 plant families were investigated for anti-Onchocerca activity in 13 studies. The most active species were Anacardium occidentale, Euphorbia hirta and Acacia nilotica each with an LC<sub>50</sub> value of 2.76, 6.25 and 1.2g/mL, respectively. Polycarpol, voacamine, voacangine, ellagic acid, gallic acid, gentisic acid, 3-O-acetyl aleuritolic acid and (-)-epigallocatechin 3-O-gallate were the isolated plant compounds with anti-Onchocerca activity. Most of the assessed extract/compounds showed a good safety after in vivo acute toxicity assays and/or in vitro cytotoxicity test. The exception was the ethanol extract of Trichilia emetica, which killed completely and drastically mice at a dose of 3000mg/kg. Several plant groups of compounds were shown active against Onchocerca sp. such as tannins, alkaloids, triterpenoids and essential oils. Nevertheless, none of the active compounds was subjected to clinical trial, to assessment of its diffusibility through nodular wall or its capability to induce genetic resistance of Onchocerca sp.