[
MicroPubl Biol,
2020]
Sensation of environmental cues and decisions made as a result of processing of specific sensory cues underlies a myriad of behavioral responses that control every-day life decisions and ultimately survival in many organisms. Despite the appreciation that organisms can sense, process, and translate sensory cues into a behavioral response, the neural mechanisms and molecules that mediate these behaviors are still unclear. Neurotransmitters, such as glutamate, have been implicated in a variety of sensory-dependent behavioral responses, including olfaction, nociception, mechanosensation, and gustation (Mugnaini et al., 1984, Wendy et al., 2013, Daghfous et al., 2018). Despite understanding the importance of glutamate signaling in sensation and translation of contextual cues on behavior, the molecular mechanisms underlying how glutamatergic transmission influences sensory behavior is not fully understood. The nematode, C. elegans, is able to sense a variety of sensory cues. These types of sensory-dependent behavioral responses are mediated through olfactory, gustatory, mechanosensory and aerotactic circuits of the worm (Lans and Jansen, 2004, Milward et al., 2011, Bretscher et al., 2011, Kodama-Namba et al., 2013, Ghosh et al., 2017). Odor guided behavior toward attractants, such as, food cues requires neurotransmitters, that include, glutamate (Chalasani et al., 2007, Chalasani et al., 2010). More specifically, once on a food source, wild type N2 hermaphrodites will generally be retained on a food source (Shtonda and Avery, 2006, Milward et al., 2011, Harris et al., 2019). The types, quality, pathogenicity, and perception of food can modulate food recognition, food leaving rates, and overall navigational strategies towards food (Zhang et al., 2005, Shtonda and Avery, 2006; Ollofsson et al., 2014). These types of behaviors are based on detection of environmental cues, including oxygen, metabolites, pheromones, and odors. Food leaving behaviors have been shown to be influenced by a number of neuronal signals (Shtonda and Avery, 2006, Bendesky et al., 2011, Ollofsson et al., 2014, Meisel et al., 2014, Hao et al., 2018).
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.