-
[
Genetics,
2022]
Over the past 50 years, the nematode worm Caenorhabditis elegans has become established as one of the most powerful and widely used model organisms. This article explores the origins and subsequent history of a generally accepted system for gene naming and genetic nomenclature in C. elegans.
-
[
Genome Biol,
2001]
The number of genes predicted for the Caenorhabditis elegans genome is remarkably high: approximately 20,000, if both protein-coding and RNA-coding genes are counted. This article discusses possible explanations for such a high value.
-
[
Genetics,
2017]
The Genetics Society of America's Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity and intellectual ingenuity has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2017 winner, Jonathan Hodgkin, used elegant genetic studies to unravel the sex determination pathway in Caenorhabditis elegans He inferred the order of genes in the pathway and their modes of regulation using epistasis analyses-a powerful tool that was quickly adopted by other researchers. He expanded the number and use of informational suppressor mutants in C. elegans that are able to act on many genes. He also introduced the use of collections of wild C. elegans to study naturally occurring genetic variation, paving the way for SNP mapping and QTL analysis, as well as studies of hybrid incompatibilities between worm species. His current work focuses on nematode-bacterial interactions and innate immunity.
-
[
Worm,
2014]
In a recent paper, we reported the isolation and surprising effects of two new bacterial pathogens for Caenorhabditis and related nematodes. These two pathogens belong to the genus Leucobacter and were discovered co-infecting a wild isolate of Caenorhabditis that had been collected in Cape Verde. The interactions of these bacteria with C. elegans revealed both unusual mechanisms of pathogenic attack, and an unexpected defense mechanism on the part of the worm. One pathogen, known as Verde1, is able to trap swimming nematodes by sticking their tails together, resulting in the formation of "worm-star" aggregates, within which worms are killed and degraded. Trapped larval worms, but not adults, can sometimes escape by undergoing whole-body autotomy into half-worms. The other pathogen, Verde2, kills worms by a different mechanism associated with rectal infection. Many C. elegans mutants with alterations in surface glycosylation are resistant to Verde2 infection, but hypersensitive to Verde1, being rapidly killed without worm-star formation. Conversely, surface infection of wild-type worms with Verde1 is mildly protective against Verde2. Thus, there are trade-offs in susceptibility to the two bacteria. The Leucobacter pathogens reveal novel nematode biology and provide powerful tools for exploring nematode surface properties and bacterial susceptibility.
-
[
Genetics,
2002]
The natural sexes of the nematode Caenorhabditis elegans are the self-fertilizing hermaphrodite (XX) and the male (XO). The underlying genetic pathway controlling sexual phenotype has been extensively investigated. Mutations in key regulatory genes have been used to create a series of stable populations in which sex is determined not by X chromosome dosage, but in a variety of other ways, many of which mimic the diverse sex-determination systems found in different animal species. Most of these artificial strains have male and female sexes. Each of seven autosomal genes can be made to adopt a role as the primary determinant of sex, and each of the five autosomes can carry the primary determinant, thereby becoming a sex chromosome. Strains with sex determination by fragment chromosomes, episomes, compound chromosomes, or environmental factors have also been constructed. The creation of these strains demonstrates the ease with which one sex-determination system can be transformed into another.
-
[
J Dev Biol,
2019]
Autotomy in <i>C. elegans</i>, which results in the severing of the body into two fragments, has been observed as a response to late larval worm-star formation after exposure to a bacterial surface pathogen. It was found that autotomy can occur in both hermaphroditic and gonochoristic nematode species, and during either the L3 or the L4 molt. Severing was hypothesized to be driven by a 'balloon-twisting' mechanism during molting but was found to be independent of lethargus-associated flipping. Extensive healing and apparent tissue fusion were seen at the site of scission. No obvious regeneration of lost body parts was seen in either L4 or adult truncated worms. A variety of mutants defective in processes of cell death, healing, regeneration, responses to damage, stress or pathogens were found to be competent to autotomize. Mutants specifically defective in autotomy have yet to be found. Autotomy may represent a modification of the essential normal process of molting.
-
[
Curr Biol,
2013]
The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine, while others attack via its external surface. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated "worm-stars." Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi.
-
[
J Embryol Exp Morphol,
1984]
The development of the nematode C. elegans is highly invariant, and has been described in great detail. Many developmental mutations have been isolated and analysed; some of these identify switch genes, i.e. genes that control the choice between two developmental alternatives. It appears that the genetic controls of development in this animal are discrete, hierarchical and relatively simple. The control of sexual dimorphism provides an example of how a series of switch genes are organized in a regulatory cascade.
-
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
-
[
Mol Cell Biol,
1998]
Eight different amber suppressor tRNA (suptRNA) mutations in the nematode Caenorhabditis elegans have been isolated; all are derived from members of the tRNA(Trp) gene family (K. Kondo, B. Makovec, R. H. Waterston, and J. Hodgkin, J. Mol. Biol. 215:7-19, 1990). Genetic assays of suppressor activity suggested that individual tRNA genes were differentially expressed, probably in a tissue- or developmental stage-specific manner. We have now examined the expression of representative members of this gene family both in vitro, using transcription in embryonic cell extracts, and in vivo, by assaying suppression of an amber-mutated lacZ reporter gene in animals carrying different suptRNA mutations. Individual wild-type tRNA(Trp) genes and their amber-suppressing counterparts appear to be transcribed and processed identically in vitro, suggesting that the behavior of suptRNAs should reflect wild-type tRNA expression. The levels of transcription of different suptRNA genes closely parallel the extent of genetic suppression in vivo. The results suggest that differential expression of tRNA genes is most likely at the transcriptional rather than the posttranscriptional level and that 5' flanking sequences play a role in vitro, and probably in vivo as well. Using suppression of a lacZ(Am) reporter gene as a more direct assay of suptRNA activity in individual cell types, we have again observed differential expression which correlates with genetic and in vitro transcription results. This provides a model system to more extensively study the basis for differential expression of this tRNA gene family.