-
[
Biochem Soc Symp,
2002]
There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fuca1-2Gal1-2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccaromyces cerevisiae and Drosophila melanogaster is also discussed
-
[
Biochimie,
2003]
Caenorhabditis elegans has become one of the most widely used model organisms for a range of molecular cell biological applications and is being increasingly used by glycobiologists. However, a major problem has been the lack of knowledge of the structure of the protein-linked glycans from this organism. In recent years several groups have published structural data, particularly N-glycan structural data. However, some of these data are contradictory. In this review we critically assess all the N-glycan structural data and consider how close we are in our goal of defining the glycome of C. elegans.
-
[
Trends Genet,
1998]
Studies of sex myoblast (SM) migration in the nematode Caenorhabditis elegans have shown that multiple guidance mechanisms cooperate to ensure the accurate and reproducible targeting of the SMs. Many issues arise in the analysis of SM migration, including the action of multiple guidance mechanisms, redundant sources of guidance information, the multiple uses of molecular components, and whether factors affect cell fate determination events or the guidance mechanisms themselves. These issues are common to many cell migration events and make the analysis of SM migration instructive to our general understanding of how cell migrations are controlled.
-
[
J Cell Sci,
2002]
The canonical UCS (UNC-45/Crol/She4p) protein, Caenorhabditis elegans UNC-45, was one of the earliest molecules to be shown genetically to be necessary for sarcomere assembly. Genetic analyses of homologues in several fungal species indicate that the conserved UCS domain functionally interacts with conventional type II and unconventional type V myosins. In C. elegans and other invertebrate species, UNC-45 and its orthologues interact with both sarcomeric and non-sarcomeric myosins whereas, in vertebrates, there are two UNC-45 isoforms: a general cell (GC) and a striated muscle (SM) isoform. Although the mechanism of action of UCS proteins is unknown, recent biochemical studies suggest that they may act as molecular chaperones that facilitate the folding and/or maturation of myosin.
-
[
RNA Biol,
2009]
SmY RNAs are a family of approximately 70-90 nt small nuclear RNAs found in nematodes. In C. elegans, SmY RNAs copurify in a small ribonucleoprotein (snRNP) complex related to the SL1 and SL2 snRNPs that are involved in nematode mRNA trans-splicing. Here we describe a comprehensive computational analysis of SmY RNA homologs found in the currently available genome sequences. We identify homologs in all sequenced nematode genomes in class Chromadorea. We are unable to identify homologs in a more distantly related nematode species, Trichinella spiralis (class: Dorylaimia), and in representatives of non-nematode phyla that use trans-splicing. Using comparative RNA sequence analysis, we infer a conserved consensus SmY RNA secondary structure consisting of two stems flanking a consensus Sm protein binding site. A representative seed alignment of the SmY RNA family, annotated with the inferred consensus secondary structure, has been deposited with the Rfam RNA families database.