-
[
WormBook,
2007]
Four biogenic amines: octopamine, tyramine, dopamine and serotonin act in C. elegans to modulate behavior in response to changing environmental cues. These neurotransmitters act at both neurons and muscles to affect egg laying, pharyngeal pumping, locomotion and learning. A variety of experimental approaches including genetic, imaging, biochemical and pharmacological analyses have been used to identify the enzymes and cells that make and release the amines and the cells and receptors that bind them. Dopamine and serotonin act through receptors and downstream signaling mechanisms similar to those that operate in the mammalian brain suggesting that C. elegans will provide a valuable model for understanding biogenic amine signaling in the brain.
-
[
Genetics,
2020]
<i>Caenorhabditis elegans</i>' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on <i>C. elegans</i> behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
-
[
WormBook,
2006]
Small GTPases of the Ras superfamily are key regulators of diverse cellular and developmental events, including differentiation, cell division, vesicle transport, nuclear assembly, and control of the cytoskeleton. The C. elegans genome encodes 56 members of the major Ras GTPase subfamilies, including the Ras/Ral/Rap family, the Rho family, the Rab family, Ran, and the Arf/Sar family. Studies in C. elegans have shown that Ras/Rap family members control cell fate specification and differentiation; Rho GTPases control morphogenesis and actin dynamics, including axon pathfinding and cell migration; Rab GTPases control synaptic vesicle trafficking and release and gene expression responses in innate immunity; the Ran GTPase controls nuclear import/export, nuclear reassembly after mitosis, and kinetechore association with microtubules; and Arf/Sar GTPases control morphogenesis and microtubule organization and possibly cilia development. Functions for many of the small GTPases remain to be discovered, and continuing studies in C. elegans will elucidate the roles of these molecules in animal development.
-
[
Genetics,
2024]
Extracellular vesicles (EVs) encompass a diverse array of membrane-bound organelles released outside cells in response to developmental and physiological cell needs. EVs play important roles in remodeling the shape and content of differentiating cells and can rescue damaged cells from toxic or dysfunctional content. EVs can send signals and transfer metabolites between tissues and organisms to regulate development, respond to stress or tissue damage, or alter mating behaviors. While many EV functions have been uncovered by characterizing ex vivo EVs isolated from body fluids and cultured cells, research using the nematode Caenorhabditis elegans has provided insights into the in vivo functions, biogenesis, and uptake pathways. The C. elegans EV field has also developed methods to analyze endogenous EVs within the organismal context of development and adult physiology in free-living, behaving animals. In this review, we summarize major themes that have emerged for C. elegans EVs and their relevance to human health and disease. We also highlight the diversity of biogenesis mechanisms, locations, and functions of worm EVs and discuss open questions and unexplored topics tenable in C. elegans, given the nematode model is ideal for light and electron microscopy, genetic screens, genome engineering, and high-throughput omics.
-
[
WormBook,
2007]
The intestine is one of the major organs in C. elegans and is largely responsible for food digestion and assimilation as well as the synthesis and storage of macromolecules. In addition, the intestine is emerging as a powerful experimental system in which to study such universal biological phenomena as vesicular trafficking, biochemical clocks, stress responses and aging. The present chapter describes some of these many and varied properties of the C. elegans intestine: the embryonic cell lineage, intestine morphogenesis, structure and physiology of the intestinal cell and, finally, the transcription factor network controlling intestine development and function.
-
[
Genetics,
2023]
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
-
[
WormBook,
2007]
The nematode cuticle is an extremely flexible and resilient exoskeleton that permits locomotion via attachment to muscle, confers environmental protection and allows growth by molting. It is synthesised five times, once in the embryo and subsequently at the end of each larval stage prior to molting. It is a highly structured extra-cellular matrix (ECM), composed predominantly of cross-linked collagens, additional insoluble proteins termed cuticlins, associated glycoproteins and lipids. The cuticle collagens are encoded by a large gene family that are subject to strict patterns of temporal regulation. Cuticle collagen biosynthesis involves numerous co- and post-translational modification, processing, secretion and cross-linking steps that in turn are catalysed by specific enzymes and chaperones. Mutations in individual collagen genes and their biosynthetic pathway components can result in a range of defects from abnormal morphology (dumpy and blister) to embryonic and larval death, confirming an essential role for this structure and highlighting its potential as an ECM experimental model system.
-
[
Genetics,
2022]
Light microscopes are the cell and developmental biologists' "best friend", providing a means to see structures and follow dynamics from the protein to the organism level. A huge advantage of C. elegans as a model organism is its transparency, which coupled with its small size means that nearly every biological process can be observed and measured with the appropriate probe and light microscope. Continuous improvement in microscope technologies along with novel genome editing techniques to create transgenic probes have facilitated the development and implementation of a dizzying array of methods for imaging worm embryos, larvae and adults. In this review we provide an overview of the molecular and cellular processes that can be visualized in living worms using light microscopy. A partial inventory of fluorescent probes and techniques successfully used in worms to image the dynamics of cells, organelles, DNA, and protein localization and activity is followed by a practical guide to choosing between various imaging modalities, including widefield, confocal, lightsheet, and structured illumination microscopy. Finally, we discuss the available tools and approaches, including machine learning, for quantitative image analysis tasks, such as colocalization, segmentation, object tracking, and lineage tracing. Hopefully, this review will inspire worm researchers who have not yet imaged their worms to begin, and push those who are imaging to go faster, finer, and longer.
-
[
WormBook,
2005]
The mitochondrial genome is vital for Caenorhabditis elegans metabolism, physiology, and development. The C. elegans mitochondrial DNA is typical of animal mitochondrial genomes in its size and gene content. It is 13,794 nucleotides in length and encodes 36 genes: 2 ribosomal RNAs, 22 transfer RNAs, and 12 protein subunits of the mitochondrial respiratory chain. Although it represents only a small number of genes, an elaborate cellular machinery comprised of over 200 nuclear genes is needed to replicate, transcribe, and maintain the mitochondrial chromosome and to assemble the translation machinery needed to express this dozen proteins. Mitochondrial genetics is peculiar and complex because mitochondrial DNA is maternally inherited and can be present at tens to tens of thousands of copies per cell. The mitochondrial genome content of the developing nematode is developmentally regulated; it increases about 30-fold between the L1 and the adult stages and blocking the increase leads to larval arrest. Energy metabolism is also intimately linked to aging and lifespan determination. The nematode model system offers numerous advantages for understanding the full importance and scope of the mitochondrial genome in animal life.
-
[
WormBook,
2005]
Programmed cell death is an integral component of C. elegans development. Genetic studies in C. elegans have led to the identification of more than two dozen genes that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular and biochemical studies have revealed the underlying conserved mechanisms that control these three phases of programmed cell death. In particular, an interplay of transcriptional regulatory cascades and networks involving CES-1 , CES-2 , HLH-1 / HLH-2 , TRA-1 , and other transcriptional regulators is crucial in activating the expression of the key death-inducing gene
egl-1 in cells destined to die. A protein interaction cascade involving EGL-1 , CED-9 , CED-4 and CED-3 results in the activation of the key cell death protease CED-3 . The activation of CED-3 initiates the cell disassembly process and nuclear DNA fragmentation, which is mediated by the release of apoptogenic mitochondrial factors ( CPS-6 and WAH-1 ) and which involves multiple endo- and exo-nucleases such as NUC-1 and seven CRN nucleases. The recognition and removal of the dying cell is mediated by two partially redundant signaling pathways involving CED-1 , CED-6 and CED-7 in one pathway and CED-2 , CED-5 , CED-10 , CED-12 and PSR-1 in the other pathway. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in multicellular organisms.