-
[
Genetics,
2015]
Ellsworth Dougherty (1921-1965) was a man of impressive intellectual dimensions and interests; in a relatively short career he contributed enormously as researcher and scholar to the biological knowledge base for selection of Caenorhabditis elegans as a model organism in neurobiology, genetics, and molecular biology. He helped guide the choice of strains that were eventually used, and, in particular, he developed the methodology and understanding for the nutrition and axenic culture of nematodes and other organisms. Dougherty insisted upon a concise terminology for culture techniques and coined descriptive neologisms that were justified by their linguistic roots. Among other contributions, he refined the classification system for the Protista.
-
[
Nature,
2002]
A humble nematode has wormed its way into the affection of the scientific community and helped to secure this year's Nobel Prize in Physiology or Medicine. The award goes to three biologists whose work on the model organism Caenorhabditis elegans has yielded insights and spin-offs in such diverse fields as cancer research and modern
-
[
Brain Res Rev,
2007]
This review summarized the contribution to neurobiology achieved through the use of invertebrate preparations in the second half of the 20th century. This fascinating period was preceded by pioneers who explored a wide variety of invertebrate phyla and developed various preparations appropriate for electrophysiological studies. Their work advanced general knowledge about neuronal properties (dendritic, somatic, and axonal excitability; pre- and postsynaptic mechanisms). The study of invertebrates made it possible to identify cell bodies in different ganglia, and monitor their operation in the course of behavior. In the 1970s, the details of central neural circuits in worms, molluscs, insects, and crustaceans were characterized for the first time and well before equivalent findings were made in vertebrate preparations. The concept and nature of a central pattern generator (CPG) have been studied in detail, and the stomatogastric nervous system (STNS) is a fine example, having led to many major developments since it was first examined. The final part of the review is a discussion of recent neuroethological studies that have addressed simple cognitive functions and confirmed the utility of invertebrate models. After presenting our invertebrate "mice," the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, our conclusion, based on arguments very different from those used fifty years ago, is that invertebrate models are still essential for acquiring insight into the complexity of the brain.
-
[
Cell,
2002]
In 1963, Sydney Brenner, one of the founders of molecular biology, had reached an intellectual impasse. He felt that there were few advances left in that field that would have the significance of the discovery of mRNA and the elucidation of the genetic code, both of which he had participated in, and in any case with so many Americans joining in, the chemical details of replication and so forth would all be worked out soon. Brenner thought large thoughts, and the questions that were left seemed too
-
[
Carbohydr Res,
2016]
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
-
[
Genetics,
2015]
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.
-
[
Bioessays,
2015]
Nowadays, in the Internet databases era, certain knowledge is being progressively lost. This knowledge, which we feel is essential and should be acquired through education, is the understanding of how the pioneer researchers faced major questions in their field and made their discoveries.
-
[
J Proteomics,
2010]
Much of our knowledge on heredity, development, physiology and the underlying cellular and molecular processes is derived from the studies of model, or reference, organisms. Despite the great variety of life, a common base of shared principles could be extracted by studying a few life forms, selected based on their amenability to experimental studies. Very briefly, the origins of a few model organisms are described, including E. coli, yeast, C. elegans, Drosophila, Xenopus, zebrafish, mouse, maize and Arabidopsis. These model organisms were chosen because of their importance and wide use, which made them systems of choice for genome-wide studies. Many of their genomes were between the first to be fully sequenced, opening unprecedented opportunities for large-scale transcriptomics and proteomics studies.
-
[
Trends Parasitol,
2001]
The absence of animal models in which to reproduce successfully the complete life cycle of Onchocerca volvulus has hindered progress towards unravelling the processes involved in the regulation of parasite abundance in the vertebrate host. Mathematical frameworks have been developed to explore the consequences of such processes in determining parasite population dynamics and the effect on these of control interventions. Post-control predictions are strongly influenced by the assumptions concerning the reproductive life span of the adult female worm (the longest-lived parasite stage) and the distribution of its survival times, and this notion is important to all frameworks. Here, we review the development of models concerning onchocerciasis and discuss the various approaches that have been used, presenting a deterministic framework with parameter values estimated from the Mexican onchocerciasis control programme. This model is used to evaluate interventions combining the removal of adult worms (nodulectomy) and the microfilaricidal and possibly sterilizing effect of ivermectin.
-
[
Nat Rev Genet,
2001]
The nematode Caenorhabditis elegans is well known to practising biologists as a model organism. Early work with C. elegans is best understood as part of a descriptive tradition in biological practice. Although the resources that have been generated by the C. elegans community have been revolutionary, they were produced by traditional methods and approaches. Here, I review the choice and use of the worm as an experimental organism for genetics and neurobiology that began in the 1960s.