-
[
2003]
Since the publication of the first genetic research paper on Caenorhabditis elegans (C. elegans for short) in 1974, this microscopic, free-living nematode has become a popular model organism to study development, neurobiology, and other biological problems. The ability to do powerful genetics has been the most critical reason why studies using this organism have made enormous contributions to basic biology and medical science. Therefore, C. elegans genetics should be part of any modern genetic education. In this chapter, we describe some of the unique properties of C. elegans that makes it an exceptional organism for genetic and molecular biological research. Some important genetic tools and methodologies developed by C. elegans researchers will also be introduced. We aim to connect the fundamental principles of genetics as described in early chapters with practical applications of these principles in actual research. We have chosen a few genetic pathways and biological problems as examples for illustrating the logic behind the genetic analyses and for introducing some commonly practiced strategies and methods. We do not hesitate to introduce some of the most advanced and up-to-date methods and approaches, including those developed since the genome sequence was determined in 1998. We believe today's students can go right into the heart of present research after learning the basic principle of Genetics (see the early chapters of this book) and molecular biology. In fact, in many C. elegans laboratories, undergraduate students are doing a wide variety of experiments using the genetic techniques
-
[
WormBook,
2007]
It is now well established that cells modify chromatin to establish transcriptionally active or inactive chromosomal regions. Such regulation of the chromatin structure is essential for the proper development of organisms. C. elegans is a powerful organism for exploring the developmental role of chromatin factors and their regulation. This chapter presents an overview of recent studies on chromatin factors in C. elegans with a description of their key roles in a variety of cellular and developmental processes.
-
[
1990]
Induction of the C. elegans vulva is a simple example of pattern formation in which the combined action of two intercellular signals specifies three cell types in a precise spatial pattern. These two signals, a graded inductive signal and a short-range lateral signal, are each mediated by a distinct genetic pathway. To understand how these intercellular signals specify cell type, we are studying, by genetic analysis and molecular cloning, genes whose products are involved in the induction pathway.
-
[
WormBook,
2005]
Cell-division control affects many aspects of development. Caenorhabditis elegans cell-cycle genes have been identified over the past decade, including at least two distinct Cyclin-Dependent Kinases (CDKs), their cyclin partners, positive and negative regulators, and downstream targets. The balance between CDK activation and inactivation determines whether cells proceed through G 1 into S phase, and from G 2 to M, through regulatory mechanisms that are conserved in more complex eukaryotes. The challenge is to expand our understanding of the basic cell cycle into a comprehensive regulatory network that incorporates environmental factors and coordinates cell division with growth, differentiation and tissue formation during development. Results from several studies indicate a critical role for CKI-1 , a CDK inhibitor of the Cip/Kip family, in the temporal control of cell division, potentially acting downstream of heterochronic genes and dauer regulatory pathways.
-
[
WormBook,
2006]
There are two sexes in C. elegans, hermaphrodite and male. While there are many sex-specific differences between males and hermaphrodites that affect most tissues, the basic body plan and many of its structures are identical. However, most structures required for mating or reproduction are sexually dimorphic and are generated by sex-specific cell lineages. Thus to understand cell fate specification in hermaphrodites, one must consider how the body plan, which is specified during embryogenesis, influences the fates individual cells. One possible mechanism may involve the asymmetric distribution of POP-1 /Tcf, the sole C. elegans Tcf homolog, to anterior-posterior sister cells. Another mechanism that functions to specify cell fates along the anterior-posterior body axis in both hermaphrodites and males are the Hox genes. Since most of the cell fate specifications that occur in hermaphrodites also occur in males, the focus of this chapter will be on those that only occur in hermaphrodites. This will include the cell fate decisions that affect the HSN neurons, ventral hypodermal P cells, lateral hypodermal cells V5 , V6 , and T ; as well as the mesodermal M, Z1 , and Z4 cells and the intestinal cells. Both cell lineage-based and cell-signaling mechanisms of cell fate specification will be discussed. Only two direct targets of the sex determination pathway that influence cell fate specification to produce hermaphrodite-specific cell fates have been identified. Thus a major challenge will be to learn additional mechanisms by which the sex determination pathway interacts with signaling pathways and other cell fate specification genes to generate hermaphrodite-specific cell fates.