[
J Cell Biol,
2007]
Microtubules deliver positional signals and are required for establishing polarity in many different organisms and cell types. In Caenorhabditis elegans embryos, posterior polarity is induced by an unknown centrosome-dependent signal. Whether microtubules are involved in this signaling process has been the subject of controversy. Although early studies supported such an involvement (O''Connell, K.F., K.N. Maxwell, and J.G. White. 2000. Dev. Biol. 222:55-70; Wallenfang, M.R., and G. Seydoux. 2000. Nature. 408:89-92; Hamill, D.R., A.F. Severson, J.C. Carter, and B. Bowerman. 2002. Dev. Cell. 3:673-684), recent work involving RNA interference knockdown of tubulin led to the conclusion that centrosomes induce polarity independently of microtubules (Cowan, C.R., and A.A. Hyman. 2004. Nature. 431:92-96; Sonneville, R., and P. Gonczy. 2004. Development. 131: 3527-3543). In this study, we investigate the consequences of tubulin knockdown on polarity signaling. We find that tubulin depletion delays polarity induction relative to wild type and that polarity only occurs when a small, late-growing microtubule aster is visible at the centrosome. We also show that the process of a normal meiosis produces a microtubule-dependent polarity signal and that the relative levels of anterior and posterior PAR (partitioning defective) polarity proteins influence the response to polarity signaling. Our results support a role for microtubules in the induction of embryonic polarity in C. elegans.
[
Methods Mol Biol,
2015]
Optogenetics was introduced as a new technology in the neurosciences about a decade ago (Zemelman et al., Neuron 33:15-22, 2002; Boyden et al., Nat Neurosci 8:1263-1268, 2005; Nagel et al., Curr Biol 15:2279-2284, 2005; Zemelman et al., Proc Natl Acad Sci USA 100:1352-1357, 2003). It combines optics, genetics, and bioengineering to render neurons sensitive to light, in order to achieve a precise, exogenous, and noninvasive control of membrane potential, intracellular signaling, network activity, or behavior (Rein and Deussing, Mol Genet Genomics 287:95-109, 2012; Yizhar et al., Neuron 71:9-34, 2011). As C. elegans is transparent, genetically amenable, has a small nervous system mapped with synapse resolution, and exhibits a rich behavioral repertoire, it is especially open to optogenetic methods (White et al., Philos Trans R Soc Lond B Biol Sci 314:1-340, 1986; De Bono et al., Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans, In: Hegemann P, Sigrist SJ (eds) Optogenetics, De Gruyter, Berlin, 2013; Husson et al., Biol Cell 105:235-250, 2013; Xu and Kim, Nat Rev Genet 12:793-801, 2011). Optogenetics, by now an "exploding" field, comprises a repertoire of different tools ranging from transgenically expressed photo-sensor proteins (Boyden et al., Nat Neurosci 8:1263-1268, 2005; Nagel et al., Curr Biol 15:2279-2284, 2005) or cascades (Zemelman et al., Neuron 33:15-22, 2002) to chemical biology approaches, using photochromic ligands of endogenous channels (Szobota et al., Neuron 54:535-545, 2007). Here, we will focus only on optogenetics utilizing microbial rhodopsins, as these are most easily and most widely applied in C. elegans. For other optogenetic tools, for example the photoactivated adenylyl cyclases (PACs, that drive neuronal activity by increasing synaptic vesicle priming, thus exaggerating rather than overriding the intrinsic activity of a neuron, as occurs with rhodopsins), we refer to other literature (Weissenberger et al., J Neurochem 116:616-625, 2011; Steuer Costa et al., Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity, In: Cambridge S (ed) Photswitching proteins, Springer, New York, 2014). In this chapter, we will give an overview of rhodopsin-based optogenetic tools, their properties and function, as well as their combination with genetically encoded indicators of neuronal activity. As there is not "the" single optogenetic experiment we could describe here, we will focus more on general concepts and "dos and don'ts" when designing an optogenetic experiment. We will also give some guidelines on which hardware to use, and then describe a typical example of an optogenetic experiment to analyze the function of the neuromuscular junction, and another application, which is Ca(2+) imaging in body wall muscle, with upstream neuronal excitation using optogenetic stimulation. To obtain a more general overview of optogenetics and optogenetic tools, we refer the reader to an extensive collection of review articles, and in particular to volume 1148 of this book series, "Photoswitching Proteins."