-
[
J Immunol,
2020]
Helminth infections are accompanied by eosinophilia in parasitized tissues. Eosinophils are effectors of immunity to tissue helminths. We previously reported that in the context of experimental filarial nematode infection, optimum tissue eosinophil recruitment was coordinated by local macrophage populations following IL-4R-dependent in situ proliferation and alternative activation. However, in the current study, we identify that control of chronic adult filarial worm infection is evident in IL-4R-deficient (IL-4R<sup>-/-</sup>) mice, whereby the majority of infections do not achieve patency. An associated residual eosinophilia was apparent in infected IL-4R<sup>-/-</sup> mice. By treating IL-4R<sup>-/-</sup> mice serially with anti-CCR3 Ab or introducing a compound deficiency in CCR3 within IL-4R<sup>-/-</sup> mice, residual eosinophilia was ablated, and susceptibility to chronic adult <i>Brugia malayi</i> infection was established, promoting a functional role for CCR3-dependent eosinophil influx in immune control in the absence of IL-4/IL-13-dependent immune mechanisms. We investigated additional cytokine signals involved in residual eosinophilia in the absence IL-4R signaling and defined that IL-4R<sup>-/-</sup>/IL-5<sup>-/-</sup> double-knockout mice displayed significant eosinophil deficiency compared with IL-4R<sup>-/-</sup> mice and were susceptible to chronic fecund adult filarial infections. Contrastingly, there was no evidence that either IL-4R-dependent or IL-4R-independent/CCR3/IL-5-dependent immunity influenced <i>B. malayi</i> microfilarial loads in the blood. Our data demonstrate multiplicity of Th2-cytokine control of eosinophil tissue recruitment during chronic filarial infection and that IL-4R-independent/IL-5- and CCR3-dependent pathways are sufficient to control filarial adult infection via an eosinophil-dependent effector response prior to patency.
-
Guimaraes AF, Allen JE, Furlong-Silva J, Pionnier N, Steven A, Cook DAN, Sjoberg H, Van Rooijen N, Cross S, Turner JD, Jenkins SJ, Taylor MJ, Halliday A
[
PLoS Pathog,
2018]
Eosinophils are effectors in immunity to tissue helminths but also induce allergic immunopathology. Mechanisms of eosinophilia in non-mucosal tissues during infection remain unresolved. Here we identify a pivotal function of tissue macrophages (M) in eosinophil anti-helminth immunity using a BALB/c mouse intra-peritoneal Brugia malayi filarial infection model. Eosinophilia, via C-C motif chemokine receptor (CCR)3, was necessary for immunity as CCR3 and eosinophil impairments rendered mice susceptible to chronic filarial infection. Post-infection, peritoneal M populations proliferated and became alternatively-activated (AAM). Filarial AAM development required adaptive immunity and interleukin-4 receptor-alpha. Depletion of M prior to infection suppressed eosinophilia and facilitated worm survival. Add back of filarial AAM in M-depleted mice recapitulated a vigorous eosinophilia. Transfer of filarial AAM into Severe-Combined Immune Deficient mice mediated immunological resistance in an eosinophil-dependent manner. Exogenous IL-4 delivery recapitulated tissue AAM expansions, sustained eosinophilia and mediated immunological resistance in M-intact SCID mice. Co-culturing Brugia with filarial AAM and/or filarial-recruited eosinophils confirmed eosinophils as the larvicidal cell type. Our data demonstrates that IL-4/IL-4R activated AAM orchestrate eosinophil immunity to filarial tissue helminth infection.
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.
-
[
J Antibiot (Tokyo),
1990]
Cochlioquinone A, isolated from the fungus Helminthosporium sativum, was found to have nematocidal activity. Cochlioquinone A is a competitive inhibitor of specific [3H]ivermectin binding suggesting that cochlioquinone A and ivermectin interact with the same membrane receptor.
-
[
J Lab Autom,
2016]
Microfluidic devices offer new technical possibilities for a precise manipulation of Caenorhabditis elegans due to the comparable length scale. C. elegans is a small, free-living nematode worm that is a popular model system for genetic, genomic, and high-throughput experimental studies of animal development and neurobiology. In this paper, we demonstrate a microfluidic system in polydimethylsiloxane (PDMS) for dispensing of a single C. elegans worm into a 96-well plate. It consists of two PDMS layers, a flow and a control layer. Using five microfluidic pneumatic valves in the control layer, a single worm is trapped upon optical detection with a pair of optical fibers integrated perpendicular to the constriction channel and then dispensed into a microplate well with a dispensing tip attached to a robotic handling system. Due to its simple design and facile fabrication, we expect that our microfluidic chip can be expanded to a multiplexed dispensation system of C. elegans worms for high-throughput drug screening.
-
[
Curr Biol,
2017]
The
pha-1 gene of Caenorhabditis elegans was originally heralded as a master regulator of organ differentiation. A new study suggests instead that
pha-1 actually serves no role in development and instead is a component of a selfish genetic element.
-
[
Curr Biol,
2020]
How protein homeostasis is maintained in the extracellular space remains poorly studied. A recent study employed a Caenorhabditis elegans model to carry out a systematic analysis of the extracellular proteostasis network and uncovered its role in combating a pathogenic attack.
-
[
Lab Chip,
2008]
A droplet-based microfluidic system integrating a droplet generator and a droplet trap array is described for encapsulating individual Caenorhabditis elegans into a parallel series of droplets, enabling characterization of the worm behavior in response to neurotoxin at single-animal resolution.