-
[
Science,
2002]
As any homeowner knows, timely maintenance is vital for keeping a building functioning properly after construction is finished. The same is evidently true for the complex architecture of the nervous system - at least in the roundworm. On page 686, neuroscientists Oliver Hobert, Oscar Aurelio, and David Hall describe a new family of proteins that help keep the wiring of the worm's nervous system tangle free.
-
[
Nature,
1994]
On page 32 of this issue, a joint team from the Genome Sequencing Center (St. Louis, USA) and the newly founded Sanger Centre (Hinxton Hall, Cambridge, UK) report a contiguous sequence of over two megabases from chromosome III of the nematode worm, Caenorhabditis elegans. This is the longest contiguous DNA sequence yet determined, and it prompts rumination on how far we have come in the sequencing enterprise, and on how far - and where - we have
-
[
Science,
1996]
What 's the secret to long life? For the nematode Caenorhabditis elegans, it's slow, easy living, in which all life's events occur in a leisurely rhythm, according to work described on page 1010 of this issue. The new research, by Siegfried Hekimi and Bernard Lakowski of McGill University in Montreal, identifies four genes that, when mutated, can make these worms use energy more efficiently, feed and swim at a slower pace-and live many times their normal life-span. Some of the experimental nematodes lived for almost 2 months, far longer than their expected 9 days.
-
[
Science,
1996]
The one-cell animal embryo, or zygote, faces a daunting engineering task: implementing the architectural plans inscribed in its DNS for building a complex, multicelled body. So, like any sensible construction supervisor, the zygote swiftly divides the project into manageable chunks, assigning some of its progeny to build only gut, for example, and other to make only muscle or skin. Just how each early embryonic cell gets its orders is understood only for the fruit fly Drosophila melanogaster-an achievement that helped win 1995's Nobel Prize in medicine for three developmental biologists. Now, however, the communication lines governing embryonic development are emerging in another animal beloved of developmental researchers: the tiny worm known as Caenorhabditis elegans.