Induced protein dimerization is a useful tool to study protein function. A well-established method takes advantage of the binding between the FKBP12 protein (FK506 binding protein 12 kDa) and the FRB domain of the mTOR kinase upon interaction with rapamycin (Putyrski and Schultz 2012). Recently we established a rapamycin-inducible dimerization system for the germ line and early embryos of C. elegans (Mangal et al. 2018). We demonstrated the translocation of mCherry::FKBP12 to the plasma membrane via rapamycin induced binding to FRB::GFP::PH (anchored to the plasma membrane). In order to study the function of a native protein upon rapamycin induced translocation it would be advantageous to tag the genomic region of the gene of interest (GOI) with mCherry::fkbp12 to ensure that the fusion protein is controlled by its native environment.The CRISPR/Cas9 system has revolutionized genome engineering in C. elegans (Chen et al. 2013; Arribere et al. 2014; Paix et al. 2015; Dickinson et al. 2015; Norris et al. 2015; Schwartz and Jorgensen 2016). DNA double-stranded breaks are generated by the endonuclease Cas9, which is guided to its target by a single guide RNA (sgRNA) (Jinek et al. 2012). If a repair donor vector is provided carrying a transgenic sequence flanked by 5 and 3 homology regions, the cell can repair these double-stranded breaks via homology directed repair (HDR) by incorporating the transgenic sequence into the cleaved locus. This enables e.g. N- or C-terminal fluorescent protein fusions of the GOI. Drug-selection based screening methods to tag native proteins have been developed (Dickinson et al. 2015; Norris et al. 2015; Schwartz and Jorgensen 2016). One of these streamlined methods uses a dual marker selection cassette (Norris et al. 2015). Herein, we describe a modification of the dual-marker selection cassette plasmid of Norris et al. (2015) that can be used in conjunction with CRISPR/Cas9, TALEN or Zinc Finger Nucleases to tag endogenous proteins for inducible translocation to the plasma membrane during early embryogenesis or in the germ line. We modified Norriss mCherry-tag repair donor vector by fusing a C. elegans codon-optimized fkbp12 sequence 3 to mCherry (Mangal et al. 2018) and re-establishing the critical NotI site for 3 homology region insertion (Figure 1 A; pEL226). This vector can be used to C-terminally tag any GOI by following the protocol of Norris et al. (2015), including subsequent Cre-mediated excision of the dual marker selection cassette (Figure 1 B). As proof of principle we C-terminally tagged the locus of
mex-6 on chromosome II with mCherry::fkbp12 (Figure 1 B). We observed increasing cytoplasmic mCherry signal in late-stage oocytes, and anterior enrichment in early-stage embryos (Figure 1 D and E; DMSO control). We did not detect any mCherry signal in the pachytene region of adult stage gonads (Figure 1 D arrowheads; DMSO control). These observations confirm previous localization studies for
mex-6(
ax2065[
mex-6::gfp]) II transgenic animals (Paix et al. 2014), and mirror those for observed for the paralogous protein, MEX-5 (Schubert et al. 2000; Griffin et al. 2011). We crossed the MEX-6::mCherry::FKBP12 expressing strain (EJ1269, Table 2) with a strain that expresses FRB::GFP::PH (ZAN87; Mangal et al., 2018), which localizes to the plasma membrane in the germ line and early embryos (Figure 1 D and E), and then singled F2 hermaphrodites to obtain a strain that is homozygous for both insertions (EJ1270, Table 2). Animals from this strain were injected with 1 mM rapamycin into the pachytene region of the germ line to induce binding between the FRB and FKBP12 domains. As expected, we observed strong accumulation of MEX-6::mCherry::FKBP12 signal at the plasma membrane of late-stage oocytes and anterior blastomeres of early embryos, 6 h after injection (Figure 1 D and E). Importantly, the MEX-6::mCherry::FKBP12 remains cytoplasmic if DMSO is injected into the germ line as a control (Figure 1 D and E). Our repair donor vector can be easily modified to tag any GOI with mCherry::fkbp12 in a well-established and streamlined manner (Norris et al. 2015) and it expands the C. elegans CRISPR/Cas9 toolbox for the rapamycin-inducible dimerization system. By crossing into the strain that expresses FRB::GFP::PH (ZAN87) (Mangal et al. 2018) it becomes possible to translocate an endogenously tagged mCherry::FKBP12 protein to the plasma membrane of early embryos or the germ line. Additionally, MEX-6::mCherry::FKBP12 could be used to enrich a protein-of-interest that is tagged with FRB::GFP within the anterior region of early embryos. 2018) it becomes possible to translocate an endogenously tagged mCherry::FKBP12 protein to the plasma membrane of early embryos or the germ line. Additionally, MEX-6::mCherry::FKBP12 could be used to enrich a protein-of-interest that is tagged with FRB::GFP within the anterior region of early embryos.