[
Methods Cell Biol,
2013]
Lipid droplets (LDs) are an intracellular organelle, consisting of a neutral lipid core covered by a monolayer of phospholipids and proteins. It primarily mediates lipid storage, metabolism, and transportation. Recently, research of LDs has emerged as a rapidly developing field due to the strong linkage between ectopic lipid accumulation and metabolic syndromes. Recently, more than 30 proteomic studies of isolated LDs have identified many important LD proteins that have highlighted and have also predicted the potential biological roles of the organelle, motivating the field to develop quite rapidly. This chapter summarizes methods used in proteomic studies for three representative species reported and discusses their advantages and disadvantages. We believe that this chapter provides useful information and methods for future LD proteomic studies especially for LDs in other species.
[
WormBook,
2016]
In C. elegans, mutants that are defective in muscle function and/or structure are easy to detect and analyze since: 1) body wall muscle is essential for locomotion, and 2) muscle structure can be assessed by multiple methods including polarized light, electron microscopy (EM), Green Fluorescent Protein (GFP) tagged proteins, and immunofluorescence microscopy. The overall structure of the sarcomere, the fundamental unit of contraction, is conserved from C. elegans to man, and the molecules involved in sarcomere assembly, maintenance, and regulation of muscle contraction are also largely conserved. This review reports the latest findings on the following topics: the transcriptional network that regulates muscle differentiation, identification/function/dynamics of muscle attachment site proteins, regulation of the assembly and maintenance of the sarcomere by chaperones and proteases, the role of muscle-specific giant protein kinases in sarcomere assembly, and the regulation of contractile activity, and new insights into the functions of the dystrophin glycoprotein complex.